BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 6696897)

  • 21. A proton gradient, not a sodium gradient, is the driving force for active transport of lactate in rabbit intestinal brush-border membrane vesicles.
    Tiruppathi C; Balkovetz DF; Ganapathy V; Miyamoto Y; Leibach FH
    Biochem J; 1988 Nov; 256(1):219-23. PubMed ID: 2851979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specificity of the Na+-dependent monocarboxylic acid transport pathway in rabbit renal brush border membranes.
    Nord EP; Wright SH; Kippen I; Wright EM
    J Membr Biol; 1983; 72(3):213-21. PubMed ID: 6854625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Succinate and citrate transport in renal basolateral and brush-border membranes.
    Wright SH; Wunz TM
    Am J Physiol; 1987 Sep; 253(3 Pt 2):F432-9. PubMed ID: 3631279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions between lithium and renal transport of Krebs cycle intermediates.
    Wright EM; Wright SH; Hirayama B; Kippen I
    Proc Natl Acad Sci U S A; 1982 Dec; 79(23):7514-7. PubMed ID: 6961427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrogenicity of sodium/L-glutamate cotransport in rabbit renal brush-border membranes: a reevaluation.
    Heinz E; Sommerfeld DL; Kinne RK
    Biochim Biophys Acta; 1988 Jan; 937(2):300-8. PubMed ID: 2892532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenylalanine uptake in isolated renal brush border vesicles.
    Evers J; Murer H; Kinne R
    Biochim Biophys Acta; 1976 Apr; 426(4):598-615. PubMed ID: 1259984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mechanism of Na+-L-lactate cotransport by brush-border membrane vesicles from horse kidney. Analysis by isotopic exchange kinetics of a sequential model and stoichiometry.
    Mengual R; Leblanc G; Sudaka P
    J Biol Chem; 1983 Dec; 258(24):15071-8. PubMed ID: 6654905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the chloride conductance in porcine renal brush-border membrane vesicles.
    Krick W; Dölle A; Hagos Y; Burckhardt G
    Pflugers Arch; 1998 Feb; 435(3):415-21. PubMed ID: 9426299
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrophysiology of plasma membrane vesicles.
    Wright EM
    Am J Physiol; 1984 Apr; 246(4 Pt 2):F363-72. PubMed ID: 6372509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dicarboxylate transport in human placental brush-border membrane vesicles.
    Ogin C; Grassl SM
    Biochim Biophys Acta; 1989 Apr; 980(2):248-54. PubMed ID: 2930791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Renal brush-border membrane Na(+)-sulfate cotransport: stimulation by thyroid hormone.
    Tenenhouse HS; Lee J; Harvey N
    Am J Physiol; 1991 Sep; 261(3 Pt 2):F420-6. PubMed ID: 1832265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Asymmetry in the transport of lactate by basolateral and brush border membranes of rat kidney cortex.
    Barac-Nieto M; Murer H; Kinne R
    Pflugers Arch; 1982 Feb; 392(4):366-71. PubMed ID: 7070969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions between tricarboxylic acid cycle intermediates and phosphate uptake by proximal renal cells and renal brush border membranes.
    Sakhrani LM; Tessitore N; Wright SH; Varner D; Massry SG
    Miner Electrolyte Metab; 1985; 11(6):345-50. PubMed ID: 4069084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sodium-adenosine cotransport in brush-border membranes from rabbit ileum.
    Betcher SL; Forrest JN; Knickelbein RG; Dobbins JW
    Am J Physiol; 1990 Sep; 259(3 Pt 1):G504-10. PubMed ID: 2399991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phenylalanine transport in guinea pig jejunum. A general mechanism for organic solute and sodium cotransport.
    Alvarado F; Lherminier M
    J Physiol (Paris); 1982 Aug; 78(2):131-45. PubMed ID: 7131327
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for electroneutral chloride transport in rabbit renal cortical brush border membrane vesicles.
    Shiuan D; Weinstein SW
    Am J Physiol; 1984 Nov; 247(5 Pt 2):F837-47. PubMed ID: 6093593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Specificity and modes of the anion exchanger in dog renal microvillus membranes.
    Guggino SE; Martin GJ; Aronson PS
    Am J Physiol; 1983 Jun; 244(6):F612-21. PubMed ID: 6859253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of Na+ uptake into renal brush border membrane vesicles.
    Nord EP; Hafezi A; Wright EM; Fine LG
    Am J Physiol; 1984 Oct; 247(4 Pt 2):F548-54. PubMed ID: 6496682
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cadmium binding and sodium-dependent solute transport in renal brush-border membrane vesicles.
    Ahn DW; Kim YM; Kim KR; Park YS
    Toxicol Appl Pharmacol; 1999 Feb; 154(3):212-8. PubMed ID: 9931280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles.
    Park K; Kim KR; Kim JY; Park YS
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):255-9. PubMed ID: 9266797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.