These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 6696974)

  • 1. Interactions of lens proteins. Ultrafiltration is unsuitable to detect self- or mixed-association.
    Siezen RJ
    Biophys Chem; 1984 Jan; 19(1):49-55. PubMed ID: 6696974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of lens proteins. Self-association and mixed-association studies of bovine alpha-crystallin and gamma-crystallin.
    Siezen RJ; Owen EA
    Biophys Chem; 1983 Oct; 18(3):181-94. PubMed ID: 6640068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of lens proteins. Concentration dependence of beta-crystallin aggregation.
    Siezen RJ; Anello RD; Thomson JA
    Exp Eye Res; 1986 Sep; 43(3):293-303. PubMed ID: 3780875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance gel permeation chromatography of bovine eye lens proteins in combination with low-angle laser light scattering. Superior resolution of the oligomeric beta-crystallins.
    Bindels JG; de Man BM; Hoenders HJ
    J Chromatogr; 1982 Dec; 252():255-67. PubMed ID: 7182411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of alpha-crystallin aggregation by gamma-crystallin.
    Mach H; Trautman PA; Thomson JA; Lewis RV; Middaugh CR
    J Biol Chem; 1990 Mar; 265(9):4844-8. PubMed ID: 2318866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Identification of water-insoluble crystallins complexing under nondenaturing conditions: demonstration of chaperone activity of alpha-crystallin.
    Babizhayev MA; Bours J; Utikal KJ
    Ophthalmic Res; 1996; 28(6):365-74. PubMed ID: 9032796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunological characterization of calf lens gamma-crystallins, separated by preparative isoelectric focusing.
    Bours J; Vornhagen R; Herlt M; Rink H
    Curr Eye Res; 1981-1982; 1(11):651-8. PubMed ID: 7049580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. -Crystallin. The isolation and characterization of distinct macromolecular fractions.
    Spector A; Li LK; Augusteyn RC; Schneider A; Freund T
    Biochem J; 1971 Sep; 124(2):337-43. PubMed ID: 5158502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State of differentiation of bovine epithelial lens cells in vitro. Modulation of the synthesis and of the polymerization of specific proteins (crystallins) and non-specific proteins in relation to cell divisions.
    Simonneau L; Hervé B; Jacquemin E; Courtois Y
    Exp Cell Res; 1983 May; 145(2):433-46. PubMed ID: 6407854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calf lens alpha-crystallin, a molecular chaperone, builds stable complexes with beta s- and gamma-crystallins.
    Bours J
    Ophthalmic Res; 1996; 28 Suppl 1():23-31. PubMed ID: 8727960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related variations in the distribution of crystallins within the bovine lens.
    Bessems GJ; De Man BM; Bours J; Hoenders HJ
    Exp Eye Res; 1986 Dec; 43(6):1019-30. PubMed ID: 3817022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in proportion and molecular weight of native crystallins from single human lenses upon aging and formation of nuclear cataract.
    Bessems GJ; Hoenders HJ; Wollensak J
    Exp Eye Res; 1983 Dec; 37(6):627-37. PubMed ID: 6662209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunochemical studies on lens protein-protein complexes I. The heterogeneity and structure of complexed alpha-crystallin.
    Manski W; Malinowski K; Bonitsis G
    Exp Eye Res; 1979 Dec; 29(6):625-35. PubMed ID: 544280
    [No Abstract]   [Full Text] [Related]  

  • 14. Thermodynamic stability of bovine alpha-crystallin in its interactions with other bovine crystallins.
    Bettelheim FA; Chen A
    Int J Biol Macromol; 1998; 22(3-4):247-52. PubMed ID: 9650079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the reaggregation of isolated subunits of calf lens alpha-crystallin.
    Li LK; Spector A
    Exp Eye Res; 1972 Mar; 13(2):110-9. PubMed ID: 5013583
    [No Abstract]   [Full Text] [Related]  

  • 16. The glycation and cross-linking of isolated lens crystallins by ascorbic acid.
    Prabhakaram M; Ortwerth BJ
    Exp Eye Res; 1992 Sep; 55(3):451-9. PubMed ID: 1426076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mass distribution of water-soluble crystallins from the human foetal lens during development.
    Bessems GJ; Bours J; Hofmann D; Födisch HJ
    J Chromatogr; 1990 Aug; 529(2):277-86. PubMed ID: 2229247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Column chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional electrophoresis of pig lens crystallins.
    Vidal P; Cabezas-Cerrato J
    Ophthalmic Res; 1990; 22(1):31-8. PubMed ID: 2342776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of lens proteins of gray squirrel and human.
    Zigman S; Paxhia T; Lou M; Yu NT
    Comp Biochem Physiol B; 1990; 96(4):697-704. PubMed ID: 2225772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examination of a lens 'native' plasma membrane fraction and its associated crystallins.
    Fleschner CR; Cenedella RJ
    Curr Eye Res; 1992 Aug; 11(8):739-52. PubMed ID: 1424720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.