These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 6697944)

  • 1. Mathematical analysis of the changes in the intracellular potentials, generated by a human skeletal muscle fibre in the recovery cycle at the different temperatures.
    Stephanova DI
    Electromyogr Clin Neurophysiol; 1984; 24(1-2):107-15. PubMed ID: 6697944
    [No Abstract]   [Full Text] [Related]  

  • 2. Mathematical analysis of the changes in the intracellular potentials, generated by human skeletal muscle fibre under the effect of temperature.
    Stephanova DI; Dimitrov GV
    Electromyogr Clin Neurophysiol; 1984; 24(5):377-86. PubMed ID: 6723566
    [No Abstract]   [Full Text] [Related]  

  • 3. Mathematical modelling of the changes in the parameters of the action potential of frog muscle fibre at different temperatures.
    Stephanova D; Gydikov A
    Electromyogr Clin Neurophysiol; 1985; 25(4):223-32. PubMed ID: 4006854
    [No Abstract]   [Full Text] [Related]  

  • 4. Mathematical analysis of the changes in the action potentials, generated by a frog skeletal muscle fibre under the effect of temperature.
    Stephanova DI
    Electromyogr Clin Neurophysiol; 1984; 24(5):369-76. PubMed ID: 6723565
    [No Abstract]   [Full Text] [Related]  

  • 5. [Relation between inter- and intracellular action potentials of frog isolates muscle fiber at various temperatures].
    Gerilovski L; Radicheva N; Gidikov A
    Biofizika; 1988; 33(5):855-9. PubMed ID: 3224113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship of intracellular and extracellular action potentials of skeletal muscle fibers.
    Andreassen S; Rosenfalck A
    Crit Rev Bioeng; 1981 Nov; 6(4):267-306. PubMed ID: 7044677
    [No Abstract]   [Full Text] [Related]  

  • 7. Mathematical analysis of the changes in the parameters of the action potentials, membrane and ionic currents of frog muscle fibre during the recovery cycle.
    Stephanova DI
    Biol Cybern; 1987; 57(3):207-11. PubMed ID: 3676358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the changes in the velocity of spreading of the action potential on the distribution of the level of depolarization along an excitable fibre.
    Trayanova NA
    Electromyogr Clin Neurophysiol; 1983; 23(1-2):61-71. PubMed ID: 6840039
    [No Abstract]   [Full Text] [Related]  

  • 9. [Simultaneous registration of temperature and action potentials in human skeletal muscle].
    Láhoda F
    Biomed Tech (Berl); 1972 Apr; 17(2):70-3. PubMed ID: 5067544
    [No Abstract]   [Full Text] [Related]  

  • 10. Extracellular potential field of a single striated muscle fibre immersed in anisotropic volume conductor.
    Dimitrov GV; Dimitrova NA
    Electromyogr Clin Neurophysiol; 1974; 14(5-6):423-36. PubMed ID: 4457327
    [No Abstract]   [Full Text] [Related]  

  • 11. The effect of temperature on the initial volume decrease and action potential of the muscle.
    Aradi F; Schäffer B
    Acta Biochim Biophys Acad Sci Hung; 1971; 6(3):299-305. PubMed ID: 5316963
    [No Abstract]   [Full Text] [Related]  

  • 12. Mathematical model of the single-fibre action potential.
    Fleisher SM; Studer M; Moschytz GS
    Med Biol Eng Comput; 1984 Sep; 22(5):433-9. PubMed ID: 6482531
    [No Abstract]   [Full Text] [Related]  

  • 13. The summation of muscle fibre action potentials.
    George RE
    Med Biol Eng; 1970 Jul; 8(4):357-65. PubMed ID: 5496683
    [No Abstract]   [Full Text] [Related]  

  • 14. Bipolar recording of potentials generated by excitable fibres in a volume conductor.
    Dimitrov GV; Dimitrova NA
    Agressologie; 1977; 18(5):235-52. PubMed ID: 602986
    [No Abstract]   [Full Text] [Related]  

  • 15. [Possibility of modelling the relation between the intracellular potential of individual muscle fibers and the total electromyogram of tonic muscles].
    El'iasberg VM; Karlov AA
    Fiziol Zh SSSR Im I M Sechenova; 1972 Oct; 58(10):1629-32. PubMed ID: 4648065
    [No Abstract]   [Full Text] [Related]  

  • 16. Frequency domain modeling of volume conduction of single muscle fiber action potentials.
    Albers BA; Rutten WL; Wallinga-De Jonge W; Boom HB
    IEEE Trans Biomed Eng; 1988 May; 35(5):328-32. PubMed ID: 3397080
    [No Abstract]   [Full Text] [Related]  

  • 17. Model of the extracellular potential field of a single striated muscle fibre.
    Dimitrova N
    Electromyogr Clin Neurophysiol; 1974; 14(1):53-66. PubMed ID: 4457323
    [No Abstract]   [Full Text] [Related]  

  • 18. Stretch- and stimulation frequency-induced changes in extracellular action potentials of muscle fibres during continuous activity.
    Mileva K; Vydevska M; Radicheva N
    J Muscle Res Cell Motil; 1998 Jan; 19(1):95-103. PubMed ID: 9477381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method of description of single muscle fibre action potential by an analytical function V(t, r).
    Piotrkiewicz M; Miller-Larsson A
    Biol Cybern; 1987; 56(4):237-45. PubMed ID: 3607099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional finite element modelling of muscle forces during mastication.
    Röhrle O; Pullan AJ
    J Biomech; 2007; 40(15):3363-72. PubMed ID: 17602693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.