BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6698014)

  • 21. Sulfhydryl groups in relation to the structure and catalytic activity of 2-oxo-4-hydroxyglutarate aldolase from bovine liver.
    Lane RS; Hansen BA; Dekker EE
    Biochim Biophys Acta; 1977 Mar; 481(1):212-21. PubMed ID: 557345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intramitochondrial phosphate is the source of protons in the response of liver mitochondria to cations.
    Fonyo A; Ligeti E
    FEBS Lett; 1978 Dec; 96(2):343-5. PubMed ID: 32076
    [No Abstract]   [Full Text] [Related]  

  • 23. Phosphate carrier of liver mitochondria: two equivalent SH-groups in the carrier unit.
    Fonyó A
    Biochem Biophys Res Commun; 1974 Apr; 57(4):1069-73. PubMed ID: 4830748
    [No Abstract]   [Full Text] [Related]  

  • 24. Mechanism of active shrinkage in mitochondria. I. Coupling between weak electrolyte fluxes.
    Azzone GF; Massari S; Pozzan T
    Biochim Biophys Acta; 1976 Jan; 423(1):15-26. PubMed ID: 1247603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of phenylisothiocyanates with the mitochondrial phosphate carrier. I. Covalent modification and inhibition of phosphate transport.
    Genchi G; Petrone G; De Palma A; Cambria A; Palmieri F
    Biochim Biophys Acta; 1988 Dec; 936(3):413-20. PubMed ID: 3143411
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of the energetic state of rat liver mitochondria on the sensitivity of the phosphate carrier towards SH reagents.
    Le Quoc D; Le Quoc K; Gaudemer Y
    Biochim Biophys Acta; 1977 Oct; 462(1):131-40. PubMed ID: 911819
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oligomycin sensitivity of mitochondrial sulfhydryl groups.
    Zimmer G
    Biochim Biophys Acta; 1977 Aug; 461(2):268-73. PubMed ID: 889821
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A gated pathway for electrophoretic Na+ fluxes in rat liver mitochondria. Regulation by surface Mg2+.
    Bernardi P; Angrilli A; Azzone GF
    Eur J Biochem; 1990 Feb; 188(1):91-7. PubMed ID: 2156695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elevated phosphate transporting activity and phosphate carrier content in mitochondria of rat hepatoma with high glycolytic capacity.
    Tkácová E; Kuzela S
    Biochem Int; 1985 Jul; 11(1):45-50. PubMed ID: 4038318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reactivity of mitochondrial sulfhydryl groups toward dithionitrobenzoic acid and bromobimanes under oligomycin-inhibited and uncoupling conditions.
    Freisleben HJ; Fuchs J; Mainka L; Zimmer G
    Arch Biochem Biophys; 1988 Oct; 266(1):89-97. PubMed ID: 2845867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of phosphate efflux pathways in rat liver mitochondria.
    Kaplan RS; Pedersen PL
    Biochem J; 1983 May; 212(2):279-88. PubMed ID: 6882372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3,5,3'-triiodothyronine induces mitochondrial permeability transition mediated by reactive oxygen species and membrane protein thiol oxidation.
    Castilho RF; Kowaltowski AJ; Vercesi AE
    Arch Biochem Biophys; 1998 Jun; 354(1):151-7. PubMed ID: 9633610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence of a phosphate-transporter system in the inner membrane of isolated mitochondria.
    Tyler DD
    Biochem J; 1969 Mar; 111(5):665-78. PubMed ID: 5783467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tracking of proton flow during transition from anaerobiosis to steady state in rat liver mitochondria.
    Luvisetto S; Cola C; Conover TE; Azzone GF
    Biochim Biophys Acta; 1990 Jul; 1018(1):77-90. PubMed ID: 2165420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Importance of SH groups in catalysis by bovine brain acid phosphatase.
    Bittencourt HM; Chaimovich H
    Biochim Biophys Acta; 1976 Jun; 438(1):153-8. PubMed ID: 7316
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Importance of the flux of phosphate across the inner membrane of kidney mitochondria for the activation of glutaminase and the transport of glutamine.
    Kovacević Z
    Biochim Biophys Acta; 1976 Jun; 430(3):399-412. PubMed ID: 938640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The reactivity of -SH groups in the ADP/ATP carrier isolated from beef heart mitochondria.
    Aquila H; Klingenberg M
    Eur J Biochem; 1982 Feb; 122(1):141-5. PubMed ID: 6277631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mitochondrial carnitine carrier: characterization of SH-groups relevant for its transport function.
    Indiveri C; Tonazzi A; Dierks T; Krämer R; Palmieri F
    Biochim Biophys Acta; 1992 Nov; 1140(1):53-8. PubMed ID: 1420325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial transmembrane pH and electrical gradients: evaluation of their energy relationships with respiratory rate and adenosine 5'-triphosphate synthesis.
    Wilson DF; Forman NG
    Biochemistry; 1982 Mar; 21(6):1438-44. PubMed ID: 7074098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of the mitochondrial phosphate carrier by a reaction with a carboxyl group reagent.
    Wolf G; Genchi G; Palmieri F
    Biochem Biophys Res Commun; 1989 Jul; 162(1):212-6. PubMed ID: 2751650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.