These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 6698174)

  • 1. Physiological state of submitochondrial particles and their susceptibility to Triton X-100.
    Goñi FM; Valpuesta JM; Barbero MC; Rial E; Gurtubay JI; Macarulla JM
    Experientia; 1984 Feb; 40(2):193-5. PubMed ID: 6698174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triton X-100 induced dissociation of beef heart cytochrome c oxidase into monomers.
    Robinson NC; Talbert L
    Biochemistry; 1986 May; 25(9):2328-35. PubMed ID: 3013301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy-linked nicotinamide nucleotide transhydrogenase: hydrodynamic properties and active form of purified and membrane-bound mitochondrial transhydrogenase from beef heart.
    Persson B; Ahnström G; Rydström J
    Arch Biochem Biophys; 1987 Dec; 259(2):341-9. PubMed ID: 3426231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence against protein-induced 'internal pressure' in biological membranes. Partition of 8-anilinonaphthalene-1-sulphonate into Triton X-100 micelles and submitochondrial particles.
    Gains N; Dawson AP
    Biochem J; 1982 Dec; 207(3):567-72. PubMed ID: 7165709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of metaphos on the structuro-functional organization of mitochondrial membranes.
    Shabarchin EI; Kruglyakova KE; Gendel LY; Kabanov VV
    Biol Bull Acad Sci USSR; 1979; 6(6):788-93. PubMed ID: 233298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of triton X-100 on the activity and solubilization of rat liver mitochondrial phosphatidylserine decarboxylase.
    Dygas A; Zborowski J
    Acta Biochim Pol; 1989; 36(2):131-41. PubMed ID: 2618245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of metaphos on the structural-functional organization of mitochondrial membranes].
    Shabarchin EI; Krygliakova KE; Gendel' LIa; Kabanov VV
    Izv Akad Nauk SSSR Biol; 1979; (6):937-43. PubMed ID: 229142
    [No Abstract]   [Full Text] [Related]  

  • 8. Spermine binding to submitochondrial particles and activation of adenosine triphosphatase.
    Solaini G; Tadolini B
    Biochem J; 1984 Mar; 218(2):495-9. PubMed ID: 6231925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calorimetric studies of lipid phase transitions in native and heat-denatured membranes of beef heart submitochondrial particles.
    Blazyk JF; Newman JL
    Biochim Biophys Acta; 1980 Aug; 600(3):1007-11. PubMed ID: 7407130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme catalysis in organic solvents with low water content at high temperatures. The adenosinetriphosphatase of submitochondrial particles.
    Garza-Ramos G; Darszon A; Tuena de Gómez-Puyou M; Gómez-Puyou A
    Biochemistry; 1990 Jan; 29(3):751-7. PubMed ID: 2140055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An increase of the energy coupling capacity of submitochondrial particles by lanthanides.
    Grivennikova VG; Gavrikova EV; Vinogradov AD
    FEBS Lett; 1994 Jun; 347(2-3):243-6. PubMed ID: 8034011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An increase in the energy coupling capacity of submitochondrial particles in the presence of lanthanides.
    Grivennikova VG; Gavrikova EV; Vinogradov AD
    FEBS Lett; 1994 Aug; 349(3):403-6. PubMed ID: 8050604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative determination by derivative spectrophotometry of Triton X-100 in solubilized preparations of membrane proteins.
    Terada H; Seki H; Yamamoto K; Kametani F
    Anal Biochem; 1985 Sep; 149(2):501-6. PubMed ID: 4073505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractionation of rat liver mitochondrial components after short treatments with Triton X-100.
    Barbero MC; Rial E; Otamendi JJ; Gurtubay JI; Goñi FM
    Int J Biochem; 1982; 14(10):933-40. PubMed ID: 7128910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rate of ATP synthesis by submitochondrial particles can be independent of the magnitude of the protonmotive force.
    Sorgato MC; Branca D; Ferguson SJ
    Biochem J; 1980 Jun; 188(3):945-8. PubMed ID: 6258563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of cobalt and copper complexes with o-phenanthroline on the respiratory activity of mitochondria].
    Guzhova NV; Novodarova GN; Kolosova EM; Vol'pin ME
    Biokhimiia; 1979 Aug; 44(8):1369-76. PubMed ID: 497283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aminoethylcysteine ketimine decarboxylated dimer protects submitochondrial particles from lipid peroxidation at a concentration not inhibitory of electron transport.
    Pecci L; Fontana M; Montefoschi G; Cavallini D
    Biochem Biophys Res Commun; 1994 Nov; 205(1):264-8. PubMed ID: 7999034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific and reversible activation and inactivation of the mitochondrial phosphate carrier by cardiolipin and nonionic detergents, respectively.
    Mende P; Hüther FJ; Kadenbach B
    FEBS Lett; 1983 Jul; 158(2):331-4. PubMed ID: 6873287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of luliberin on the activities of mitochondrial respiratory enzymes].
    Bakalkin GIa; Krasinskaia IP; Komissarova EN; Iaguzhinskiĭ LS; Isachenkov VA
    Biokhimiia; 1979 Aug; 44(8):1353-60. PubMed ID: 387096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MgATP-induced inhibition of the adenosine triphosphatase activity of submitochondrial particles.
    Lowe PN; Beechey RB
    Biochem J; 1981 May; 196(2):443-9. PubMed ID: 6459084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.