These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 6698635)

  • 1. Efficient computation of branched nerve equations.
    Hines M
    Int J Biomed Comput; 1984; 15(1):69-76. PubMed ID: 6698635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homomorphism on a physical system of the Hodgkin-Huxley equations for ion conductance in nerve.
    Strandberg MW
    J Theor Biol; 1985 Dec; 117(4):509-27. PubMed ID: 4094452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new cable model formulation based on Green's theorem.
    Leon LJ; Roberge FA
    Ann Biomed Eng; 1990; 18(1):1-17. PubMed ID: 2306028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational approach for the inverse problem of neuronal conductances determination.
    Mandujano Valle JA; Madureira AL; Leitão A
    J Comput Neurosci; 2020 Aug; 48(3):281-297. PubMed ID: 32627092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exponential Time Differencing Algorithm for Pulse-Coupled Hodgkin-Huxley Neural Networks.
    Tian ZK; Zhou D
    Front Comput Neurosci; 2020; 14():40. PubMed ID: 32457589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple algorithm for solving the cable equation in dendritic trees of arbitrary geometry.
    Koch C; Poggio T
    J Neurosci Methods; 1985 Feb; 12(4):303-15. PubMed ID: 3838780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the electrical behavior of anatomically complex neurons using a network analysis program: excitable membrane.
    Bunow B; Segev I; Fleshman JW
    Biol Cybern; 1985; 53(1):41-56. PubMed ID: 3841014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic theory for neuronal networks with fast and slow excitatory conductances driven by the same spike train.
    Rangan AV; Kovacic G; Cai D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041915. PubMed ID: 18517664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exclusive-OR function of single arborized neuron.
    Fromherz P; Gaede V
    Biol Cybern; 1993; 69(4):337-44. PubMed ID: 7692981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Research on a special model of nerve impulse propagation].
    Li X; Zhang W; Yuan S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Oct; 27(5):1142-5. PubMed ID: 21089687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulator for neural networks and action potentials: description and application.
    Ziv I; Baxter DA; Byrne JH
    J Neurophysiol; 1994 Jan; 71(1):294-308. PubMed ID: 7512628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Firing behaviour in stochastic nerve membrane models with different pore densities.
    Skaugen E
    Acta Physiol Scand; 1980 Jan; 108(1):49-60. PubMed ID: 6246718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A parallelizing algorithm for computing solutions to arbitrarily branched cable neuron models.
    Mascagni M
    J Neurosci Methods; 1991 Jan; 36(1):105-14. PubMed ID: 2062108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral method and high-order finite differences for the nonlinear cable equation.
    Omurtag A; Lytton WW
    Neural Comput; 2010 Aug; 22(8):2113-36. PubMed ID: 20337534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of conductance-based neuron models.
    Kepler TB; Abbott LF; Marder E
    Biol Cybern; 1992; 66(5):381-7. PubMed ID: 1562643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Maxwell's equations to the cable equation and beyond.
    Lindsay KA; Rosenberg JR; Tucker G
    Prog Biophys Mol Biol; 2004 May; 85(1):71-116. PubMed ID: 15050381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative approximation scheme for the traveling wave solutions in the Hodgkin-Huxley model.
    Muratov CB
    Biophys J; 2000 Dec; 79(6):2893-901. PubMed ID: 11106597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A continuous cable method for determining the transient potential in passive dendritic trees of known geometry.
    Holmes WR
    Biol Cybern; 1986; 55(2-3):115-24. PubMed ID: 3801532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple analytical method for determining the steady-state potential in models of geometrically complex neurons.
    Vermeulen A; Rospars JP
    J Neurosci Methods; 1998 Aug; 82(2):123-34. PubMed ID: 9700684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of static magnetic field on action potential propagation and excitation recovery in nerve.
    Hinch R; Lindsay KA; Noble D; Rosenberg JR
    Prog Biophys Mol Biol; 2005; 87(2-3):321-8. PubMed ID: 15556668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.