These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 6699020)
1. Expression of acetylcholine receptor alpha-subunit mRNA during differentiation of the BC3H1 muscle cell line. Olson EN; Glaser L; Merlie JP; Lindstrom J J Biol Chem; 1984 Mar; 259(5):3330-6. PubMed ID: 6699020 [TBL] [Abstract][Full Text] [Related]
2. Regulation of surface expression of acetylcholine receptors in response to serum and cell growth in the BC3H1 muscle cell line. Olson EN; Glaser L; Merlie JP; Sebanne R; Lindstrom J J Biol Chem; 1983 Nov; 258(22):13946-53. PubMed ID: 6643459 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the mRNA for mouse muscle acetylcholine receptor alpha subunit by quantitative translation in vitro. Sebbane R; Clokey G; Merlie JP; Tzartos S; Lindstrom J J Biol Chem; 1983 Mar; 258(5):3294-303. PubMed ID: 6826561 [TBL] [Abstract][Full Text] [Related]
4. Regulation of creatine phosphokinase expression during differentiation of BC3H1 cells. Olson EN; Caldwell KL; Gordon JI; Glaser L J Biol Chem; 1983 Feb; 258(4):2644-52. PubMed ID: 6337159 [TBL] [Abstract][Full Text] [Related]
5. The regulation of acetylcholine receptor expression in mammalian muscle. Merlie JP; Sebbane R; Gardner S; Olson E; Lindstrom J Cold Spring Harb Symp Quant Biol; 1983; 48 Pt 1():135-46. PubMed ID: 6586356 [TBL] [Abstract][Full Text] [Related]
6. Two isoforms of the muscle acetylcholine receptor alpha-subunit are translated in the human cell line TE671. Morris A; Beeson D; Jacobson L; Baggi F; Vincent A; Newsom-Davis J FEBS Lett; 1991 Dec; 295(1-3):116-8. PubMed ID: 1765141 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis of acetylcholine receptor in vitro. Anderson DJ; Blobel G Methods Enzymol; 1983; 96():367-78. PubMed ID: 6656636 [TBL] [Abstract][Full Text] [Related]
11. Regulation of acetylcholine receptor synthesis at the level of translation in rat primary muscle cells. Horovitz O; Spitsberg V; Salpeter MM J Cell Biol; 1989 May; 108(5):1817-22. PubMed ID: 2469678 [TBL] [Abstract][Full Text] [Related]
12. cDNA clone for the alpha subunit of the acetylcholine receptor from the mouse muscle cell line BC3H-1. Merlie JP; Sebbane R; Gardner S; Lindstrom J Proc Natl Acad Sci U S A; 1983 Jun; 80(12):3845-9. PubMed ID: 6344089 [TBL] [Abstract][Full Text] [Related]
13. Genetic variants of C2 muscle cells that are defective in synthesis of the alpha-subunit of the acetylcholine receptor. Black R; Goldman D; Hochschwender S; Lindstrom J; Hall ZW J Cell Biol; 1987 Sep; 105(3):1329-36. PubMed ID: 3654754 [TBL] [Abstract][Full Text] [Related]
14. Acetylcholine receptor alpha-subunit mRNA is increased by ascorbic acid in cloned L5 muscle cells: Northern blot analysis and in situ hybridization. Horovitz O; Knaack D; Podleski TR; Salpeter MM J Cell Biol; 1989 May; 108(5):1823-32. PubMed ID: 2715181 [TBL] [Abstract][Full Text] [Related]
15. Acetylcholine receptor alpha-, beta-, gamma-, and delta-subunit mRNA levels are regulated by muscle activity. Goldman D; Brenner HR; Heinemann S Neuron; 1988 Jun; 1(4):329-33. PubMed ID: 3272739 [TBL] [Abstract][Full Text] [Related]
16. Adrenergic regulation of c-fos expression in cultured BC3H1 muscle cells. Barka T; van der Noen H; Gresik EW Exp Cell Res; 1989 Dec; 185(2):419-35. PubMed ID: 2557227 [TBL] [Abstract][Full Text] [Related]
17. Acetylcholine receptor-inducing activity stimulates expression of the epsilon-subunit gene of the muscle acetylcholine receptor. Martinou JC; Falls DL; Fischbach GD; Merlie JP Proc Natl Acad Sci U S A; 1991 Sep; 88(17):7669-73. PubMed ID: 1881908 [TBL] [Abstract][Full Text] [Related]
18. Acetylcholine receptor-inducing factor from chicken brain increases the level of mRNA encoding the receptor alpha subunit. Harris DA; Falls DL; Dill-Devor RM; Fischbach GD Proc Natl Acad Sci U S A; 1988 Mar; 85(6):1983-7. PubMed ID: 2831539 [TBL] [Abstract][Full Text] [Related]
19. Regulation of differentiation of the BC3H1 muscle cell line through cAMP-dependent and -independent pathways. Hu JS; Olson EN J Biol Chem; 1988 Dec; 263(36):19670-7. PubMed ID: 2461941 [TBL] [Abstract][Full Text] [Related]
20. Glucose and insulin chronically regulate insulin action via different mechanisms in BC3H1 myocytes. Effects on glucose transporter gene expression. Mayor P; Maianu L; Garvey WT Diabetes; 1992 Mar; 41(3):274-85. PubMed ID: 1372573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]