These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 6699086)
1. Flagellar waveform and rotational orientation in a Chlamydomonas mutant lacking normal striated fibers. Hoops HJ; Wright RL; Jarvik JW; Witman GB J Cell Biol; 1984 Mar; 98(3):818-24. PubMed ID: 6699086 [TBL] [Abstract][Full Text] [Related]
2. Basal bodies and associated structures are not required for normal flagellar motion or phototaxis in the green alga Chlorogonium elongatum. Hoops HJ; Witman GB J Cell Biol; 1985 Jan; 100(1):297-309. PubMed ID: 3965476 [TBL] [Abstract][Full Text] [Related]
3. Ultrastructure and development of the flagellar apparatus and flagellar motion in the colonial graeen alga Astrephomene gubernaculifera. Hoops HJ; Floyd GL J Cell Sci; 1983 Sep; 63():21-41. PubMed ID: 6630310 [TBL] [Abstract][Full Text] [Related]
4. A mutant of Chlamydomonas reinhardtii that lacks the flagellar outer dynein arm but can swim. Kamiya R; Okamoto M J Cell Sci; 1985 Mar; 74():181-91. PubMed ID: 4030906 [TBL] [Abstract][Full Text] [Related]
5. Defective temporal and spatial control of flagellar assembly in a mutant of Chlamydomonas reinhardtii with variable flagellar number. Adams GM; Wright RL; Jarvik JW J Cell Biol; 1985 Mar; 100(3):955-64. PubMed ID: 3972905 [TBL] [Abstract][Full Text] [Related]
6. Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella. Hoops HJ; Witman GB J Cell Biol; 1983 Sep; 97(3):902-8. PubMed ID: 6224802 [TBL] [Abstract][Full Text] [Related]
7. Beat frequency difference between the two flagella of Chlamydomonas depends on the attachment site of outer dynein arms on the outer-doublet microtubules. Takada S; Kamiya R Cell Motil Cytoskeleton; 1997; 36(1):68-75. PubMed ID: 8986378 [TBL] [Abstract][Full Text] [Related]
8. Bending patterns of chlamydomonas flagella I. Wild-type bending patterns. Brokaw CJ; Luck DJ Cell Motil; 1983; 3(2):131-50. PubMed ID: 6883467 [TBL] [Abstract][Full Text] [Related]
9. Evidence for axonemal distortion during the flagellar beat of Chlamydomonas. Lindemann CB; Mitchell DR Cell Motil Cytoskeleton; 2007 Aug; 64(8):580-9. PubMed ID: 17443716 [TBL] [Abstract][Full Text] [Related]
10. Abnormal basal-body number, location, and orientation in a striated fiber-defective mutant of Chlamydomonas reinhardtii. Wright RL; Chojnacki B; Jarvik JW J Cell Biol; 1983 Jun; 96(6):1697-707. PubMed ID: 6853600 [TBL] [Abstract][Full Text] [Related]
11. Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas. Bessen M; Fay RB; Witman GB J Cell Biol; 1980 Aug; 86(2):446-55. PubMed ID: 6447155 [TBL] [Abstract][Full Text] [Related]
12. Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. Hyams JS; Borisy GG J Cell Sci; 1978 Oct; 33():235-53. PubMed ID: 31367 [TBL] [Abstract][Full Text] [Related]
13. Flagellar microtubule dynamics in Chlamydomonas: cytochalasin D induces periods of microtubule shortening and elongation; and colchicine induces disassembly of the distal, but not proximal, half of the flagellum. Dentler WL; Adams C J Cell Biol; 1992 Jun; 117(6):1289-98. PubMed ID: 1607390 [TBL] [Abstract][Full Text] [Related]
14. Intrinsic difference in beat frequency between the two flagella of Chlamydomonas reinhardtii. Kamiya R; Hasegawa E Exp Cell Res; 1987 Nov; 173(1):299-304. PubMed ID: 3678383 [TBL] [Abstract][Full Text] [Related]
15. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. Ringo DL J Cell Biol; 1967 Jun; 33(3):543-71. PubMed ID: 5341020 [TBL] [Abstract][Full Text] [Related]