These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 6699204)

  • 1. The development of the cervical spinal cord of the mouse embryo. II. A Golgi analysis of sensory, commissural, and association cell differentiation.
    Wentworth LE
    J Comp Neurol; 1984 Jan; 222(1):96-115. PubMed ID: 6699204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of the cervical spinal cord of the mouse embryo. I. A Golgi analysis of ventral root neuron differentiation.
    Wentworth LE
    J Comp Neurol; 1984 Jan; 222(1):81-95. PubMed ID: 6699203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Commissural fibers may guide cholinergic neuronal migration in developing rat cervical spinal cord.
    Phelps PE; Vaughn JE
    J Comp Neurol; 1995 Apr; 355(1):38-50. PubMed ID: 7636012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dorsally derived netrin 1 provides an inhibitory cue and elaborates the 'waiting period' for primary sensory axons in the developing spinal cord.
    Watanabe K; Tamamaki N; Furuta T; Ackerman SL; Ikenaka K; Ono K
    Development; 2006 Apr; 133(7):1379-87. PubMed ID: 16510500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association interneurons of embryonic rat spinal cord transiently express the cell surface glycoprotein SNAP/TAG-1.
    Vaughn JE; Phelps PE; Yamamoto M; Barber RP
    Dev Dyn; 1992 May; 194(1):43-51. PubMed ID: 1421519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The generation of neurons involved in an early reflex pathway of embryonic mouse spinal cord.
    Sims TJ; Vaughn JE
    J Comp Neurol; 1979 Feb; 183(4):707-19. PubMed ID: 762268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell adhesion molecules regulate guidance of dorsal root ganglion axons in the marginal zone and their invasion into the mantle layer of embryonic spinal cord.
    Shiga T; Lustig M; Grumet M; Shirai T
    Dev Biol; 1997 Dec; 192(1):136-48. PubMed ID: 9405103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and development of glutamic acid decarboxylase immunoreactivity in the spinal cord of the dogfish Scyliorhinus canicula (elasmobranchs).
    Sueiro C; Carrera I; Molist P; Rodríguez-Moldes I; Anadón R
    J Comp Neurol; 2004 Oct; 478(2):189-206. PubMed ID: 15349979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ipsi- and contralateral commissural growth cones react differently to the cellular environment of the ventral zebrafish spinal cord.
    Bernhardt RR
    J Comp Neurol; 1994 Dec; 350(1):122-32. PubMed ID: 7860796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal cord neuron classes in embryos of the smooth newt Triturus vulgaris: a horseradish peroxidase and immunocytochemical study.
    Harper CE; Roberts A
    Philos Trans R Soc Lond B Biol Sci; 1993 Apr; 340(1291):141-60. PubMed ID: 8099742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of commissural neurons in the embryonic rat spinal cord.
    Silos-Santiago I; Snider WD
    J Comp Neurol; 1992 Nov; 325(4):514-26. PubMed ID: 1469113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmental distribution and central projections of renal afferent fibers in the cat studied by transganglionic transport of horseradish peroxidase.
    Kuo DC; Nadelhaft I; Hisamitsu T; de Groat WC
    J Comp Neurol; 1983 May; 216(2):162-74. PubMed ID: 6863600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cues intrinsic to the spinal cord determine the pattern and timing of primary afferent growth.
    Redmond L; Xie H; Ziskind-Conhaim L; Hockfield S
    Dev Biol; 1997 Feb; 182(2):205-18. PubMed ID: 9070322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guidance cues from the embryonic dorsal spinal cord chemoattract dorsal root ganglion axons.
    Masuda T; Sakuma C; Taniguchi M; Kobayashi K; Kobayashi K; Shiga T; Yaginuma H
    Neuroreport; 2007 Oct; 18(16):1645-9. PubMed ID: 17921861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary sensory afferent innervation of the developing superficial dorsal horn in the South American opossum Monodelphis domestica.
    Kitchener PD; Hutton EJ; Knott GW
    J Comp Neurol; 2006 Mar; 495(1):37-52. PubMed ID: 16432898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotyping of sensory and sympathetic ganglion neurons of a galanin-overexpressing mouse--possible implications for pain processing.
    Brumovsky P; Hygge-Blakeman K; Villar MJ; Watanabe M; Wiesenfeld-Hallin Z; Hökfelt T
    J Chem Neuroanat; 2006 Jun; 31(4):243-62. PubMed ID: 16546349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The guidance molecule semaphorin III is expressed in regions of spinal cord and periphery avoided by growing sensory axons.
    Wright DE; White FA; Gerfen RW; Silos-Santiago I; Snider WD
    J Comp Neurol; 1995 Oct; 361(2):321-33. PubMed ID: 8543665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression patterns of erythropoietin and its receptor in the developing spinal cord and dorsal root ganglia.
    Knabe W; Sirén AL; Ehrenreich H; Kuhn HJ
    Anat Embryol (Berl); 2005 Oct; 210(3):209-19. PubMed ID: 16151855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular localization of three vesicular glutamate transporter mRNAs and proteins in rat spinal cord and dorsal root ganglia.
    Oliveira AL; Hydling F; Olsson E; Shi T; Edwards RH; Fujiyama F; Kaneko T; Hökfelt T; Cullheim S; Meister B
    Synapse; 2003 Nov; 50(2):117-29. PubMed ID: 12923814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression of Hoxa-2 protein along the dorsal-ventral axis of the developing and adult mouse spinal cord.
    Hao Z; Yeung J; Wolf L; Doucette R; Nazarali A
    Dev Dyn; 1999 Oct; 216(2):201-17. PubMed ID: 10536059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.