These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 6699213)

  • 21. Developmental change in choline acetyltransferase activity in nerve endings of latissimus dorsii muscles in the chick embryo: influence of chronic spinal cord stimulation.
    Gardahaut MF; Rouaud T; Renaud D; Le Douarin G
    Neurosci Lett; 1983 Dec; 43(2-3):299-302. PubMed ID: 6324047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age changes of motor innervation and acetylcholine receptor distribution on human skeletal muscle fibres.
    Oda K
    J Neurol Sci; 1984; 66(2-3):327-38. PubMed ID: 6530617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redistribution of acetylcholine receptors on developing rat myotubes.
    Ziskind-Conhaim L; Geffen I; Hall ZW
    J Neurosci; 1984 Sep; 4(9):2346-9. PubMed ID: 6481451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidnece for degradation of the acetylcholine (nicotinic) receptor in skeletal muscle during the development of the chick embryo.
    Betz H; Bourgeois JP; Changeux JP
    FEBS Lett; 1977 May; 77(2):219-24. PubMed ID: 862921
    [No Abstract]   [Full Text] [Related]  

  • 25. Density and distribution of alpha-bungarotoxin-binding sites in postsynaptic structures of regenerated rat skeletal muscle.
    Bader D
    J Cell Biol; 1981 Feb; 88(2):338-45. PubMed ID: 7204497
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Developmental changes in the distribution of acetylcholine receptors in the myotomes of Xenopus laevis.
    Chow I; Cohen MW
    J Physiol; 1983 Jun; 339():553-71. PubMed ID: 6887034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Axonally transported alpha-bungarotoxin binding sites as a putative mechanism for motor nerve backfiring.
    Aizenman E; Stanley EF; Bierkamper GG
    Proc West Pharmacol Soc; 1985; 28():201-4. PubMed ID: 2415985
    [No Abstract]   [Full Text] [Related]  

  • 28. The developmental appearance of alpha-bungarotoxin binding sites on rodent spinal cord neurons in cell culture.
    Schaffner AE; Olek AJ
    Brain Res; 1986 Mar; 390(2):239-47. PubMed ID: 3955372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of aging and physical training on the neuromuscular junction of the mouse.
    Herscovich S; Gershon D
    Gerontology; 1987; 33(1):7-13. PubMed ID: 3596265
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acetylcholine receptors and acetylcholinesterase accumulate at the nerve-muscle contacts of de novo grown human monolayer muscle cocultured with fetal rat spinal cord.
    Kobayashi T; Askanas V
    Exp Neurol; 1985 May; 88(2):327-35. PubMed ID: 3987861
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early events in neuromuscular junction formation in vitro: induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses.
    Frank E; Fischbach GD
    J Cell Biol; 1979 Oct; 83(1):143-58. PubMed ID: 511937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localization of acetylcholine receptor by 125I-labeled alpha-bungarotoxin binding at mouse motor endplates.
    Fertuck HC; Salpeter MM
    Proc Natl Acad Sci U S A; 1974 Apr; 71(4):1376-8. PubMed ID: 4524643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study of the subunit structure of rabbit nicotinic acetylcholine receptor.
    Gotti C; Casadei G; Clementi F
    Neurosci Lett; 1983 Feb; 35(2):143-8. PubMed ID: 6856192
    [No Abstract]   [Full Text] [Related]  

  • 34. A role for acetylcholine receptors in the fusion of chick myoblasts.
    Entwistle A; Zalin RJ; Warner AE; Bevan S
    J Cell Biol; 1988 May; 106(5):1703-12. PubMed ID: 3372592
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of early swimming in Xenopus laevis embryos: myotomal musculature, its innervation and activation.
    van Mier P; Armstrong J; Roberts A
    Neuroscience; 1989; 32(1):113-26. PubMed ID: 2586744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuronal bungarotoxin displaces (125I) alpha-bungarotoxin binding at the neuromuscular junction as well as to the spinal cord during embryogenesis.
    Renshaw GM; Goldie R
    Brain Res; 1996 Feb; 709(2):316-8. PubMed ID: 8833769
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The relationship between motor endplate size and muscle fiber diameter in different muscle groups of the rat.
    Oda K
    Jpn J Physiol; 1985; 35(6):1091-5. PubMed ID: 3879624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro neuronal differentiation of Drosophila embryo cells.
    Salvaterra PM; Bournias-Vardiabasis N; Nair T; Hou G; Lieu C
    J Neurosci; 1987 Jan; 7(1):10-22. PubMed ID: 3100730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chronic stimulation of the spinal cord in developing chick embryo causes the differentiation of multiple clusters of acetylcholine receptor in the posterior latissimus dorsi muscle.
    Toutant M; Bourgeois JP; Toutant JP; Renaud D; Le Douarin G; Changeux JP
    Dev Biol; 1980 May; 76(2):384-95. PubMed ID: 7390009
    [No Abstract]   [Full Text] [Related]  

  • 40. Neuronal development in Drosophila embryonic cultures.
    Bournias-Vardiabasis N; Salvaterra PS; Nair TP
    Prog Clin Biol Res; 1986; 217A():123-6. PubMed ID: 3749119
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.