BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 6699296)

  • 21. Phonatory vocal fold function in the excised canine larynx.
    Slavit DH; Lipton RJ; McCaffrey TV
    Otolaryngol Head Neck Surg; 1990 Dec; 103(6):947-56. PubMed ID: 2126129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study of variations in the male and female glottal wave.
    Monsen RB; Engebretson AM
    J Acoust Soc Am; 1977 Oct; 62(4):981-93. PubMed ID: 911405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glottal area and vibratory patterns studied with simultaneous stroboscopy, flow glottography, and electroglottography.
    Hertegård S; Gauffin J
    J Speech Hear Res; 1995 Feb; 38(1):85-100. PubMed ID: 7731222
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic extremes of voice in the light of time domain parameters extracted from the amplitude features of glottal flow and its derivative.
    Vilkman E; Alku P; Vintturi J
    Folia Phoniatr Logop; 2002; 54(3):144-57. PubMed ID: 12077506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vocal intensity in falsetto phonation of a countertenor: an analysis by synthesis approach.
    Tom K; Titze IR
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1667-76. PubMed ID: 11572375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of glottal cycle characteristics between children and adults: physiological variations.
    Patel RR; Dubrovskiy D; Döllinger M
    J Voice; 2014 Jul; 28(4):476-86. PubMed ID: 24629646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An amplitude quotient based method to analyze changes in the shape of the glottal pulse in the regulation of vocal intensity.
    Alku P; Airas M; Björkner E; Sundberg J
    J Acoust Soc Am; 2006 Aug; 120(2):1052-62. PubMed ID: 16938991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Comparison of the Use of Glottal Fry in the Spontaneous Speech of Young and Middle-Aged American Women.
    Oliveira G; Davidson A; Holczer R; Kaplan S; Paretzky A
    J Voice; 2016 Nov; 30(6):684-687. PubMed ID: 26427301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitivity of odd-harmonic amplitudes to open quotient and skewing quotient in glottal airflow.
    Titze IR
    J Acoust Soc Am; 2015 Jan; 137(1):502-4. PubMed ID: 25618080
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of resonance tubes on glottal contact quotient with and without task instruction: a comparison of trained and untrained voices.
    Gaskill CS; Quinney DM
    J Voice; 2012 May; 26(3):e79-93. PubMed ID: 21550779
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electroglottographic contact quotient in different phonation types using different amplitude threshold levels.
    Kankare E; Laukkanen AM; Ilomäki I; Miettinen A; Pylkkänen T
    Logoped Phoniatr Vocol; 2012 Oct; 37(3):127-32. PubMed ID: 22432606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emotions in vowel segments of continuous speech: analysis of the glottal flow using the normalised amplitude quotient.
    Airas M; Alku P
    Phonetica; 2006; 63(1):26-46. PubMed ID: 16514274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electroglottographic evaluation of age and gender effects during sustained phonation and connected speech.
    Ma EP; Love AL
    J Voice; 2010 Mar; 24(2):146-52. PubMed ID: 19481415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustic and EGG analyses of emotional utterances.
    Waaramaa T; Kankare E
    Logoped Phoniatr Vocol; 2013 Apr; 38(1):11-8. PubMed ID: 22587654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The membranous contact quotient: a new phonatory measure of glottal competence.
    Scherer RC; Alipour F; Finnegan E; Guo CG
    J Voice; 1997 Sep; 11(3):277-84. PubMed ID: 9297671
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flow separation in a computational oscillating vocal fold model.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2004 Sep; 116(3):1710-9. PubMed ID: 15478438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acoustic impact of the gradual glottal abduction degree on the production of fricatives: A numerical study.
    Elie B; Laprie Y
    J Acoust Soc Am; 2017 Sep; 142(3):1303. PubMed ID: 28964087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using electroglottographic real-time feedback to control posterior glottal adduction during phonation.
    Herbst CT; Howard D; Schlömicher-Thier J
    J Voice; 2010 Jan; 24(1):72-85. PubMed ID: 19185453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electroglottographic analysis of actresses and nonactresses' voices in different levels of intensity.
    Master S; Guzman M; Carlos de Miranda H; Lloyd A
    J Voice; 2013 Mar; 27(2):187-94. PubMed ID: 23294706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.