These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 670166)
1. Divalent cation-dependent stereospecificity of adenosine 5'-O-(2-thiotriphosphate) in the hexokinase and pyruvate kinase reactions. The absolute stereochemistry of the diastereoisomers of adenosine 5'-O-(2-thiotriphosphate). Jaffe EK; Cohn M J Biol Chem; 1978 Jul; 253(14):4823-5. PubMed ID: 670166 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and properties of diastereoisomers of adenosine 5'-(O-1-thiotriphosphate) and adenosine 5'-(O-2-thiotriphosphate). Eckstein F; Goody RS Biochemistry; 1976 Apr; 15(8):1685-91. PubMed ID: 178353 [TBL] [Abstract][Full Text] [Related]
3. Adenosine 5'-O-([gamma-18O]gamma-thio)triphosphate chiral at the gamma-phosphorus: stereochemical consequences of reactions catalyzed by pyruvate kinase, glycerol kinase, and hexokinase. Orr GA; Simon J; Jones SR; Chin GJ; Knowles JR Proc Natl Acad Sci U S A; 1978 May; 75(5):2230-3. PubMed ID: 209459 [TBL] [Abstract][Full Text] [Related]
4. The stereochemical course of yeast hexokinase-catalysed phosphoryl transfer by using adenosine 5'[gamma(S)-16O,17O,18O]triphosphate as substrate. Lowe G; Potter BV Biochem J; 1981 Oct; 199(1):227-33. PubMed ID: 7039616 [TBL] [Abstract][Full Text] [Related]
5. Stereochemistry of phosphoryl transfer. Lowe G; Cullis PM; Jarvest RL; Potter BV; Sproat BS Philos Trans R Soc Lond B Biol Sci; 1981 Jun; 293(1063):75-92. PubMed ID: 6115426 [TBL] [Abstract][Full Text] [Related]
6. Stereospecificity of the metal.ATP complex in flavokinase from rat small intestine. Nakano H; McCormick DB J Biol Chem; 1991 Nov; 266(33):22125-8. PubMed ID: 1657990 [TBL] [Abstract][Full Text] [Related]
7. Stereochemistry of metal ion coordination to the terminal thiophosphoryl group of adenosine 5'-O-(3-thiotriphosphate) at the active site of pyruvate kinase. Buchbinder JL; Baraniak J; Frey PA; Reed GH Biochemistry; 1993 Dec; 32(51):14111-6. PubMed ID: 8260493 [TBL] [Abstract][Full Text] [Related]
8. 7Li, 31P, and 1H NMR studies of interactions between ATP, monovalent cations, and divalent cation sites on rabbit muscle pyruvate kinase. Van Divender JM; Grisham CM J Biol Chem; 1985 Nov; 260(26):14060-9. PubMed ID: 2997192 [TBL] [Abstract][Full Text] [Related]
9. The interaction of phosphorothioate analogues of ATP with phosphomevalonate kinase. Kinetic and 31P NMR studies. Lee CS; O'Sullivan WJ J Biol Chem; 1985 Nov; 260(26):13909-15. PubMed ID: 2997186 [TBL] [Abstract][Full Text] [Related]
10. Stereochemical course of phosphokinases. The use of adenosine [gamma-(S)-16O,17O,18O]triphosphate and the mechanistic consequences for the reactions catalyzed by glycerol kinase, hexokinase, pyruvate kinase, and acetate kinase. Blättler WA; Knowles JR Biochemistry; 1979 Sep; 18(18):3927-33. PubMed ID: 226119 [TBL] [Abstract][Full Text] [Related]
11. Diastereomers of the nucleoside phosphorothioates as probes of the structure of the metal nucleotide substrates and of the nucleotide binding site of yeast hexokinase. Jaffe EK; Cohn M J Biol Chem; 1979 Nov; 254(21):10839-45. PubMed ID: 387756 [No Abstract] [Full Text] [Related]
12. Investigations of kinase substrate specificity with aqua Rh(III) complexes of adenosine 5'-triphosphate. Lu Z; Shorter AL; Dunaway-Mariano D Biochemistry; 1993 Mar; 32(9):2378-85. PubMed ID: 8382948 [TBL] [Abstract][Full Text] [Related]
13. Structure of metal x nucleotide complex in the creatine kinase reaction. A study with diastereomeric phosphorothioate analogs of adenosine di- and triphosphate. Burgers PM; Eckstein F J Biol Chem; 1980 Sep; 255(17):8229-33. PubMed ID: 6893324 [TBL] [Abstract][Full Text] [Related]
14. Absolute configuration of the diastereomers of adenosine 5'-O-(1-thiotriphosphate): consequences for the stereochemistry of polymerization by DNA-dependent RNA polymerase from Escherichia coli. Burgers PM; Eckstein F Proc Natl Acad Sci U S A; 1978 Oct; 75(10):4798-800. PubMed ID: 368798 [TBL] [Abstract][Full Text] [Related]
15. Magnetic resonance studies of the spatial arrangement of glucose-6-phosphate and chromium (III)-adenosine diphosphate at the catalytic site of hexokinase. Petersen RL; Gupta BK Biophys J; 1979 Jul; 27(1):1-14. PubMed ID: 233578 [TBL] [Abstract][Full Text] [Related]
16. Phosphorothioate analogues of adenosine triphosphate as substrates of the mevalonate kinase reaction. Lee CS; O'Sullivan WJ Biochim Biophys Acta; 1984 Jun; 787(2):131-7. PubMed ID: 6329303 [TBL] [Abstract][Full Text] [Related]
17. Metal-nucleotide structure at the active sites of the mammalian hexokinases. Darby MK; Trayer IP Eur J Biochem; 1983 Jan; 129(3):555-60. PubMed ID: 6825673 [TBL] [Abstract][Full Text] [Related]
18. 31P nuclear magnetic resonance spectra of the thiophosphate analogues of adenine nucleotides; effects of pH and Mg2+ binding. Jaffe EK; Cohn M Biochemistry; 1978 Feb; 17(4):652-7. PubMed ID: 23826 [TBL] [Abstract][Full Text] [Related]
19. Carbamyl phosphate synthetase of Escherichia coli uses the same diastereomer of adenosine-5'-[2-thiotriphosphate] at both ATP sites. Raushel FM; Anderson PM; Villafranca JJ J Biol Chem; 1978 Oct; 253(19):6627-9. PubMed ID: 211124 [TBL] [Abstract][Full Text] [Related]
20. 31P NMR quantitation of the displacement of equilibria of arginine, creatine, pyruvate, and 3-P-glycerate kinase reactions by substitution of sulfur for oxygen in the beta phosphate of ATP. Lerman CL; Cohn M J Biol Chem; 1980 Sep; 255(18):8756-60. PubMed ID: 6997302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]