These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 670248)

  • 1. Radiographic studies of lateral flexion in the lumbar spine.
    Dimnet J; Fischer LP; Gonon G; Carret JP
    J Biomech; 1978; 11(3):143-50. PubMed ID: 670248
    [No Abstract]   [Full Text] [Related]  

  • 2. Biomechanical analysis of posterior instrumentation systems after decompressive laminectomy. An unstable calf-spine model.
    Gurr KR; McAfee PC; Shih CM
    J Bone Joint Surg Am; 1988 Jun; 70(5):680-91. PubMed ID: 3392061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A radiological study of movements of the normal lumbar spine (author's transl)].
    Cosentino R; Suarez A; Baccani S; Cosentino RV
    Rev Chir Orthop Reparatrice Appar Mot; 1982; 68(2):91-5. PubMed ID: 6211749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of posterior element resection on the stress distribution in the lumbar spine.
    Dai L; Cheng P; Tu K; Xu Y; Zhang W
    Chin Med Sci J; 1995 Jun; 10(2):113-5. PubMed ID: 7647317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematics of the scoliotic spine as related to the normal spine.
    Veldhuizen AG; Scholten PJ
    Spine (Phila Pa 1976); 1987 Nov; 12(9):852-8. PubMed ID: 3441831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new conception and approach to the problem of scoliosis.
    Kay SP
    Clin Orthop Relat Res; 1971; 81():21-33. PubMed ID: 5133040
    [No Abstract]   [Full Text] [Related]  

  • 7. A biomechanical study of the recovery in spinal stability of flexion/extension and torsion after the resection of different posterior lumbar structures in a sheep model.
    Jia H; Zhu S; Ma J; Wang J; Feng R; Xing D; Yang Y; Ma B; Chen Y; Yu J; Ma X
    Proc Inst Mech Eng H; 2013 Aug; 227(8):866-74. PubMed ID: 23695650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Contribution toward determining the inner equilibrium of the spinal column (pivotal point as temporary pole) (author's transl)].
    Rizzi M; Covelli B
    Z Orthop Ihre Grenzgeb; 1976 Oct; 114(5):828-32. PubMed ID: 997739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of the whole lumbar spine after multilevel fenestration and discectomy.
    Lu WW; Luk KD; Ruan DK; Fei ZQ; Leong JC
    Spine (Phila Pa 1976); 1999 Jul; 24(13):1277-82. PubMed ID: 10404567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does Degenerative Lumbar Spine Disease Influence Femoroacetabular Flexion in Patients Undergoing Total Hip Arthroplasty?
    Esposito CI; Miller TT; Kim HJ; Barlow BT; Wright TM; Padgett DE; Jerabek SA; Mayman DJ
    Clin Orthop Relat Res; 2016 Aug; 474(8):1788-97. PubMed ID: 27020429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between radiographic and clinical measurement of lumbar spine movement.
    Portek I; Pearcy MJ; Reader GP; Mowat AG
    Br J Rheumatol; 1983 Nov; 22(4):197-205. PubMed ID: 6652384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single level lumbar laminectomy alters segmental biomechanical behavior without affecting adjacent segments.
    Bisschop A; van Engelen SJ; Kingma I; Holewijn RM; Stadhouder A; van der Veen AJ; van Dieën JH; van Royen BJ
    Clin Biomech (Bristol, Avon); 2014 Sep; 29(8):912-7. PubMed ID: 25028214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of flexion on the geometry and actions of the lumbar erector spinae.
    Macintosh JE; Bogduk N; Pearcy MJ
    Spine (Phila Pa 1976); 1993 Jun; 18(7):884-93. PubMed ID: 8316889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The motion center in the lumbar spine during flexion and extension].
    Reichmann S; Berglund E; Lundgren K
    Z Anat Entwicklungsgesch; 1972; 138(3):283-7. PubMed ID: 4659111
    [No Abstract]   [Full Text] [Related]  

  • 15. [Spinal biomechanics and the sitting position].
    Lelong C; Drevet JG; Chevallier R; Phelip X
    Rev Rhum Mal Osteoartic; 1988 Apr; 55(5):375-80. PubMed ID: 3387881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical evaluation of the New Zealand white rabbit lumbar spine: a physiologic characterization.
    Grauer JN; Erulkar JS; Patel TC; Panjabi MM
    Eur Spine J; 2000 Jun; 9(3):250-5. PubMed ID: 10905445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiographic pseudoscoliosis in healthy male subjects following voluntary lateral translation (side glide) of the thoracic spine.
    Harrison DE; Betz JW; Cailliet R; Colloca CJ; Harrison DD; Haas JW; Janik TJ
    Arch Phys Med Rehabil; 2006 Jan; 87(1):117-22. PubMed ID: 16401449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using cineradiography for continuous dynamic-motion analysis of the lumbar spine.
    Takayanagi K; Takahashi K; Yamagata M; Moriya H; Kitahara H; Tamaki T
    Spine (Phila Pa 1976); 2001 Sep; 26(17):1858-65. PubMed ID: 11568694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of kinetic and kinematic data to evaluate load transfer as a mechanism for flexion relaxation in the lumbar spine.
    Howarth SJ; Mastragostino P
    J Biomech Eng; 2013 Oct; 135(10):101004-6. PubMed ID: 23896676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Midlumbar lateral flexion stability measured in healthy volunteers by in vivo fluoroscopy.
    Mellor FE; Muggleton JM; Bagust J; Mason W; Thomas PW; Breen AC
    Spine (Phila Pa 1976); 2009 Oct; 34(22):E811-7. PubMed ID: 19829245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.