BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 670294)

  • 21. Effects of extracellular Ca++, K+, and Na+ on cone and retinal pigment epithelium retinomotor movements in isolated teleost retinas.
    Dearry A; Burnside B
    J Gen Physiol; 1984 Apr; 83(4):589-611. PubMed ID: 6202826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scanning electron microscopy of photoreceptor cells in the light- and dark-adapted retina of Haplochromis burtoni (Cichlidae, Teleostei).
    Pietzsch-Rohrschneider I
    Cell Tissue Res; 1976 Nov; 175(1):123-30. PubMed ID: 1000593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of circadian phase on cone retinomotor movements in the Midas cichlid.
    McCormack CA; Burnside B
    Exp Eye Res; 1991 Apr; 52(4):431-8. PubMed ID: 2037021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoreceptor fine structure in light- and dark-adaptation in the butterfly fish (Pantodon buchholzi).
    Braekevelt CR
    Anat Anz; 1990; 171(5):351-8. PubMed ID: 2088152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N-ethylmaleimide-modified subfragment-1 and heavy meromyosin inhibit reactivated contraction in motile models of retinal cones.
    Porrello K; Cande WZ; Burnside B
    J Cell Biol; 1983 Feb; 96(2):449-54. PubMed ID: 6833364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cone mosaics in a teleost retina: changes during light and dark adaptation.
    Kunz YW
    Experientia; 1980 Dec; 36(12):1371-4. PubMed ID: 7202641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microtubular organization in elongating myogenic cells.
    Warren RH
    J Cell Biol; 1974 Nov; 63(2 Pt 1):550-66. PubMed ID: 4547566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photomechanical responses in crustacean retinula cells: the role of microtubules.
    Frixione E; Tsutsumi V
    Vision Res; 1982; 22(12):1507-14. PubMed ID: 7183000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell elongation in the cultured embryonic chick lens epithelium with and without protein synthesis. Involvement of microtubules.
    Piatigorsky J; Webster Hde F; Wollberg M
    J Cell Biol; 1972 Oct; 55(1):82-92. PubMed ID: 4653421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microtubular apparates of melanophores. Three-dimensional organization.
    Schliwa M
    J Cell Biol; 1978 Mar; 76(3):605-14. PubMed ID: 632321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circadian regulation of teleost retinal cone movements in vitro.
    McCormack CA; McDonnell MT
    J Gen Physiol; 1994 Mar; 103(3):487-99. PubMed ID: 8195784
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Circadian regulation of retinomotor movements. I. Interaction of melatonin and dopamine in the control of cone length.
    Pierce ME; Besharse JC
    J Gen Physiol; 1985 Nov; 86(5):671-89. PubMed ID: 2999294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of microtubules in the movement of pigment granules in teleost melanophores.
    Murphy DB; Tilney LG
    J Cell Biol; 1974 Jun; 61(3):757-79. PubMed ID: 4836391
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanism of anaphase spindle elongation: uncoupling of tubulin incorporation and microtubule sliding during in vitro spindle reactivation.
    Masuda H; McDonald KL; Cande WZ
    J Cell Biol; 1988 Aug; 107(2):623-33. PubMed ID: 3047143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological and ultrastructural analysis of elongating mitotic spindles reactivated in vitro.
    Cande WZ; McDonald K
    J Cell Biol; 1986 Aug; 103(2):593-604. PubMed ID: 3733882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prostaglandins E1, E2, and D2 induce dark-adaptive retinomotor movements in teleost retinal cones and RPE.
    Cavallaro B; Burnside B
    Invest Ophthalmol Vis Sci; 1988 Jun; 29(6):882-91. PubMed ID: 3131263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Circadian rhythms in teleost retinomotor movement. A comparison of the effects of circadian rhythm and light condition on cone length.
    Levinson G; Burnside B
    Invest Ophthalmol Vis Sci; 1981 Mar; 20(3):294-303. PubMed ID: 7203876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The retinal pigment epithelium of the teleost Notopterus notopterus (Pallas): appearance of basal infoldings during prolonged dark-adaptation.
    Nag TC
    Histol Histopathol; 2004 Jan; 19(1):143-50. PubMed ID: 14702182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flagellar microtubule dynamics in Chlamydomonas: cytochalasin D induces periods of microtubule shortening and elongation; and colchicine induces disassembly of the distal, but not proximal, half of the flagellum.
    Dentler WL; Adams C
    J Cell Biol; 1992 Jun; 117(6):1289-98. PubMed ID: 1607390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scanning electron microscopy of developing photoreceptors in the chick retina.
    Olson MD
    Anat Rec; 1979 Mar; 193(3):423-38. PubMed ID: 426304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.