These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 67037)

  • 1. An investigation of mistranslation in vivo induced by streptomycin by an examination of the susceptibility of abnormal proteins to degradation.
    Hewitt J; Kogut M
    Eur J Biochem; 1977 Apr; 74(2):285-92. PubMed ID: 67037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of ribosome recycling in uptake of dihydrostreptomycin by sensitive and resistant Escherichia coli.
    Hurwitz C; Braun CB; Rosano CL
    Biochim Biophys Acta; 1981 Jan; 652(1):168-76. PubMed ID: 6163463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Role of protein synthesis in the process of degradation of anomalous proteins in Escherichia coli cells].
    Belitskiĭ BR; Shakulov RS
    Biokhimiia; 1980 Sep; 45(9):1704-9. PubMed ID: 7018590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of abnormal proteins in Escherichia coli (protein breakdown-protein structure-mistranslation-amino acid analogs-puromycin).
    Goldberg AL
    Proc Natl Acad Sci U S A; 1972 Feb; 69(2):422-6. PubMed ID: 4551144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of dihydrostreptomycin on protein synthesis in whole cells and in cell-free extracts of a streptomycin-dependent strain of Escherichia coli B.
    Dixon H; Polglase WJ
    J Bacteriol; 1969 Oct; 100(1):247-53. PubMed ID: 4186510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of chloramphenicol and rifampicin upon degradation of dihydrostreptomycin-induced abnormal protein in Escherichia coli [proceedings].
    Carrier MJ; Kogut M; Hipkiss AR
    Biochem Soc Trans; 1980 Feb; 8(1):103-4. PubMed ID: 6154609
    [No Abstract]   [Full Text] [Related]  

  • 7. In vivo and in vitro binding of dihydrostreptomycin to Escherichia coli ribosomes.
    Prizant E; Kogut M
    FEBS Lett; 1975 Jan; 50(1):37-42. PubMed ID: 45914
    [No Abstract]   [Full Text] [Related]  

  • 8. The bactericidal action of streptomycin: membrane permeabilization caused by the insertion of mistranslated proteins into the cytoplasmic membrane of Escherichia coli and subsequent caging of the antibiotic inside the cells due to degradation of these proteins.
    Busse HJ; Wöstmann C; Bakker EP
    J Gen Microbiol; 1992 Mar; 138(3):551-61. PubMed ID: 1375623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of abnormal proteins in Escherichia coli: relative susceptibility of canavanyl proteins and puromycin peptides to proteolysis in vitro.
    Kemshead JT; Hipkiss AR
    Eur J Biochem; 1974 Jun; 45(2):535-40. PubMed ID: 4604296
    [No Abstract]   [Full Text] [Related]  

  • 10. On the basis of aminoglycoside-dependent growth of mutants from E. coli: physiological studies.
    Hummel H; Böck A
    Mol Gen Genet; 1983; 191(2):167-75. PubMed ID: 6194413
    [No Abstract]   [Full Text] [Related]  

  • 11. Response of intracellular proteolysis to alteration of bacterial protein and the implications in metabolic regulation.
    Pine MJ
    J Bacteriol; 1967 May; 93(5):1527-33. PubMed ID: 4960929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of breakdown of canavanyl proteins in Escherichia coli by growth conditions in lon+ and lon- cells.
    Rosenberger RF; Carr AJ; Hipkiss AR
    FEMS Microbiol Lett; 1990 Mar; 56(1-2):19-25. PubMed ID: 2185124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does streptomycin cause an error catastrophe?
    Fast R; Eberhard TH; Ruusala T; Kurland CG
    Biochimie; 1987 Feb; 69(2):131-6. PubMed ID: 2436672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between rates of degradation of bacterial proteins in vivo and their sensitivity to proteases.
    Goldberg AL
    Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2640-4. PubMed ID: 4560693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on mechanism of the streptomycin reaction. I. Phosphate reversal of the dihydrostreptomycin inactivation of Escherichia coli.
    HURWITZ C; ROSANO CL
    J Bacteriol; 1958 Jan; 75(1):11-5. PubMed ID: 13513553
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of dihydrostreptomycin on ribosome function in vivo: lack of correlation between changes in ribosome patterns and growth.
    Kogut M; Prizant E
    Antimicrob Agents Chemother; 1975 Mar; 7(3):341-8. PubMed ID: 49170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dihydrostreptomycin on active transport in isolated bacterial membrane vesicles.
    Eagon RG; Hartle RJ; Rake JB; Abdel-Sayed S
    Antimicrob Agents Chemother; 1982 May; 21(5):844-5. PubMed ID: 6179466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the 50S ribosomal subunit on the ability of the 30S ribosomal subunit from Escherichia coli to bind dihydrostreptomycin.
    Teraoka H; Tanaka K
    Biochem Biophys Res Commun; 1972 Jan; 46(1):93-8. PubMed ID: 4108193
    [No Abstract]   [Full Text] [Related]  

  • 19. Production of flagellin in Escherichia coli treated with aminoglycoside antibiotics.
    Reeves MA; Carrier MJ; Kogut M
    Biochem Soc Trans; 1981 Feb; 9(1):152-3. PubMed ID: 6163674
    [No Abstract]   [Full Text] [Related]  

  • 20. Cross-linking of streptomycin to the 30S subunit of Escherichia coli with phenyldiglyoxal.
    Melançon P; Boileau G; Brakier-Gingras L
    Biochemistry; 1984 Dec; 23(26):6697-703. PubMed ID: 6085011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.