These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 6703702)
1. Effect of malondialdehyde, a product of lipid peroxidation, on the function and stability of hemoglobin. Kikugawa K; Kosugi H; Asakura T Arch Biochem Biophys; 1984 Feb; 229(1):7-14. PubMed ID: 6703702 [TBL] [Abstract][Full Text] [Related]
2. Adducts of malonaldehyde and a few other aldehydes to hemoglobin. Kautiainen A; Törnqvist M; Svensson K; Osterman-Golkar S Carcinogenesis; 1989 Nov; 10(11):2123-30. PubMed ID: 2805232 [TBL] [Abstract][Full Text] [Related]
3. Oxidant damage of the lipids and proteins of the erythrocyte membranes in unstable hemoglobin disease. Evidence for the role of lipid peroxidation. Flynn TP; Allen DW; Johnson GJ; White JG J Clin Invest; 1983 May; 71(5):1215-23. PubMed ID: 6853709 [TBL] [Abstract][Full Text] [Related]
4. Demonstration of a minor hemoglobin with modified alpha chains and additional modified hemoglobins in normal and diabetic adults. Abraham EC; Stallings M; Abraham A; Clardy R Biochim Biophys Acta; 1983 May; 744(3):335-41. PubMed ID: 6849935 [TBL] [Abstract][Full Text] [Related]
5. The effect of malonyldialdehyde, a product of lipid peroxidation, on the deformability, dehydration and 51Cr-survival of erythrocytes. Jain SK; Mohandas N; Clark MR; Shohet SB Br J Haematol; 1983 Feb; 53(2):247-55. PubMed ID: 6821655 [TBL] [Abstract][Full Text] [Related]
6. Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehyde-thiobarbituric acid adduct. Wong SH; Knight JA; Hopfer SM; Zaharia O; Leach CN; Sunderman FW Clin Chem; 1987 Feb; 33(2 Pt 1):214-20. PubMed ID: 3802504 [TBL] [Abstract][Full Text] [Related]
7. Conformational fluctuations in deoxy hemoglobin revealed as a major contributor to anionic modulation of function through studies of the oxygenation and oxidation of hemoglobins A0 and Deer Lodge beta2(NA2)His --> Arg. Bonaventura C; Tesh S; Faulkner KM; Kraiter D; Crumbliss AL Biochemistry; 1998 Jan; 37(2):496-506. PubMed ID: 9425070 [TBL] [Abstract][Full Text] [Related]
8. Characterization and oxygen binding properties of des-Arg human hemoglobin. Tosqui P; Bonini-Domingos CR; Colombo MF Braz J Med Biol Res; 2009 Jun; 42(6):494-500. PubMed ID: 19448896 [TBL] [Abstract][Full Text] [Related]
9. Characterization of chemical modifications of surface properties of low density lipoproteins. Arnold K; Arnhold J; Zschörnig O; Wiegel D; Krumbiegel M Biomed Biochim Acta; 1989; 48(10):735-42. PubMed ID: 2483939 [TBL] [Abstract][Full Text] [Related]
10. Relationship between tetramer-dimer assembly and the stability of Hb Malmö (alpha 2 beta 2 97Gln). Adachi K; Vonk H; Reilly MP; Adachi H; Schroeder WA; Schwartz E; Asakura T Biochim Biophys Acta; 1984 Oct; 790(2):132-40. PubMed ID: 6487633 [TBL] [Abstract][Full Text] [Related]
11. Comparison of hemoglobin Köln erythrocyte membranes with malondialdehyde-reacted normal erythrocyte membranes. Allen DW; Burgoyne CF; Groat JD; Smith CM; White JG Blood; 1984 Dec; 64(6):1263-9. PubMed ID: 6498338 [TBL] [Abstract][Full Text] [Related]
12. Malondialdehyde formation from lipid peroxides in the thiobarbituric acid test: the role of lipid radicals, iron salts, and metal chelators. Gutteridge JM; Quinlan GJ J Appl Biochem; 1983; 5(4-5):293-9. PubMed ID: 6679543 [TBL] [Abstract][Full Text] [Related]
13. Proton nuclear magnetic resonance investigation of cross-linked asymmetrically modified hemoglobins: influence of the salt bridges on tertiary and quaternary structures of hemoglobin. Miura S; Ho C Biochemistry; 1984 May; 23(11):2492-9. PubMed ID: 6477880 [TBL] [Abstract][Full Text] [Related]
14. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Fogelman AM; Shechter I; Seager J; Hokom M; Child JS; Edwards PA Proc Natl Acad Sci U S A; 1980 Apr; 77(4):2214-8. PubMed ID: 6769124 [TBL] [Abstract][Full Text] [Related]
15. The effect of malonyldialdehyde on viscosity of normal and sickle red blood cells. Jain SK; Ross JD; Levy GJ; Duett J Biochem Med Metab Biol; 1990 Aug; 44(1):37-41. PubMed ID: 2390288 [TBL] [Abstract][Full Text] [Related]
16. The metabolism of malondialdehyde. Draper HH; McGirr LG; Hadley M Lipids; 1986 Apr; 21(4):305-7. PubMed ID: 3713450 [TBL] [Abstract][Full Text] [Related]
17. Protein modification by lipid peroxidation products: formation of malondialdehyde-derived N(epsilon)-(2-propenol)lysine in proteins. Uchida K; Sakai K; Itakura K; Osawa T; Toyokuni S Arch Biochem Biophys; 1997 Oct; 346(1):45-52. PubMed ID: 9328283 [TBL] [Abstract][Full Text] [Related]
18. Lipid peroxidation inhibits norepinephrine-stimulated lipolysis in rat adipocytes. Reduction of beta-adreno-ceptor number. Rejholcová M; Wilhelm J; Svoboda P Biochem Biophys Res Commun; 1988 Jan; 150(2):802-10. PubMed ID: 2829885 [TBL] [Abstract][Full Text] [Related]
19. Comparison of fluorescence characteristics of products of peroxidation of membrane phospholipids with those of products derived from reaction of malonaldehyde with glycine as a model of lipofuscin fluorescent substances. Shimasaki H; Hirai N; Ueta N J Biochem; 1988 Nov; 104(5):761-6. PubMed ID: 3235450 [TBL] [Abstract][Full Text] [Related]
20. Combining the influence of two low O2 affinity-inducing chemical modifications of the central cavity of hemoglobin. Nacharaju P; Friedman JM; Prabhakaran M; Acharya SA; Manjula BN Biochemistry; 2007 Apr; 46(15):4554-64. PubMed ID: 17381072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]