These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6704122)

  • 1. Possible participation of membrane thiol groups on the mechanism of NAD(P)+-stimulated Ca2+ efflux from mitochondria.
    Vercesi AE
    Biochem Biophys Res Commun; 1984 Feb; 119(1):305-10. PubMed ID: 6704122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships between the NAD(P) redox state, fatty acid oxidation, and inner membrane permeability in rat liver mitochondria.
    Lê-Quôc D; Lê-Quôc K
    Arch Biochem Biophys; 1989 Sep; 273(2):466-78. PubMed ID: 2774563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatic calcium efflux during cytochrome P-450-dependent drug oxidations at the endoplasmic reticulum in intact liver.
    Sies H; Graf P; Estrela JM
    Proc Natl Acad Sci U S A; 1981 Jun; 78(6):3358-62. PubMed ID: 6943544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants.
    Fagian MM; Pereira-da-Silva L; Martins IS; Vercesi AE
    J Biol Chem; 1990 Nov; 265(32):19955-60. PubMed ID: 2123195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of the ADP/ATP carrier in calcium-induced perturbations of the mitochondrial inner membrane permeability: importance of the orientation of the nucleotide binding site.
    Lê Quôc K; Lê Quôc D
    Arch Biochem Biophys; 1988 Sep; 265(2):249-57. PubMed ID: 2844116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of mitochondrial Ca2+ efflux by NADP+ with maintenance of respiratory control.
    Vercesi AE
    An Acad Bras Cienc; 1985 Sep; 57(3):369-75. PubMed ID: 3832980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of adenine nucleotide translocase inhibitors on dinitrophenol-induced Ca2+ efflux from pig heart mitochondria.
    Peng CF; Straub KD; Kane JJ; Murphy ML; Wadkins CL
    Biochim Biophys Acta; 1977 Nov; 462(2):403-13. PubMed ID: 588575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The participation of NADP, the transmembrane potential and the energy-linked NAD(P) transhydrogenase in the process of Ca2+ efflux from rat liver mitochondria.
    Vercesi AE
    Arch Biochem Biophys; 1987 Jan; 252(1):171-8. PubMed ID: 3813533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+-dependent NAD(P)+-induced alterations of rat liver and hepatoma mitochondrial membrane permeability.
    Vercesi AE; Ferraz VL; Macedo DV; Fiskum G
    Biochem Biophys Res Commun; 1988 Aug; 154(3):934-41. PubMed ID: 3136771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation of NAD(P)+-stimulated mitochondrial Ca2+ efflux from swelling and membrane damage.
    Vercesi AE
    Arch Biochem Biophys; 1984 Jul; 232(1):86-91. PubMed ID: 6742863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the mechanism by which Mg2+ and adenine nucleotides restore membrane potential in rat liver mitochondria deenergized by Ca2+ and phosphate.
    Toninello A; Siliprandi D; Siliprandi N
    Biochem Biophys Res Commun; 1983 Mar; 111(3):792-7. PubMed ID: 6838586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of extramitochondrial ADP on permeability transition of mouse liver mitochondria.
    Gizatullina ZZ; Chen Y; Zierz S; Gellerich FN
    Biochim Biophys Acta; 2005 Jan; 1706(1-2):98-104. PubMed ID: 15620369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria.
    Beatrice MC; Palmer JW; Pfeiffer DR
    J Biol Chem; 1980 Sep; 255(18):8663-71. PubMed ID: 7410387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Ca2+-binding glycoprotein as the site of metabolic regulation of mitochondrial Ca2+ movements.
    Panfili E; Sottocasa GL; Sandri G; Liut G
    Eur J Biochem; 1980 Mar; 105(1):205-10. PubMed ID: 7371640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alloxan effects on mitochondria in vitro: correlation between endogenous adenine nucleotides and efflux of Ca2+.
    Boquist L
    Biochem Int; 1984 Nov; 9(5):637-41. PubMed ID: 6525199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mangiferin, a natural occurring glucosyl xanthone, increases susceptibility of rat liver mitochondria to calcium-induced permeability transition.
    Andreu GL; Delgado R; Velho JA; Curti C; Vercesi AE
    Arch Biochem Biophys; 2005 Jul; 439(2):184-93. PubMed ID: 15979560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlated effluxes of adenine nucleotides, Mg2+ and Ca2+ induced in rat-liver mitochondria by external Ca2+ and phosphate.
    Zoccarato F; Rugolo M; Siliprandi D; Siliprandi N
    Eur J Biochem; 1981 Feb; 114(2):195-9. PubMed ID: 7215353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protection of tamoxifen against oxidation of mitochondrial thiols and NAD(P)H underlying the permeability transition induced by prooxidants.
    Cardoso CM; Almeida LM; Custódio JB
    Chem Biol Interact; 2004 Jul; 148(3):149-61. PubMed ID: 15276871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Oxaloacetate-dependent calcium transport in rat liver mitochondria].
    Zharova TV; Tiulina OV
    Biokhimiia; 1993 Aug; 58(8):1188-98. PubMed ID: 8399766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Difference between atractyloside and carboxyatractyloside on the binding to the mitochondrial membrane.
    Luciani S; Varotto R
    FEBS Lett; 1975 Aug; 56(2):194-7. PubMed ID: 239866
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.