These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6704140)

  • 1. Comparative studies on Ca2+- and Mg2+-binding of sarcoplasmic reticulum and chromaffin granule membranes.
    Balzer H; Khan AR; Ristić-Radivojević S
    Biochem Pharmacol; 1984 Jan; 33(1):21-9. PubMed ID: 6704140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnesium permeability of sarcoplasmic reticulum. Mg2+ is not countertransported during ATP-dependent Ca2+ uptake by sarcoplasmic reticulum.
    Salama G; Scarpa A
    J Biol Chem; 1985 Sep; 260(21):11697-705. PubMed ID: 3930482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trans-magnesium dependency of ATP-dependent calcium uptake into sarcoplasmic reticulum of skeletal muscle.
    Morsy FA; Shamoo AE
    Magnesium; 1985; 4(4):182-7. PubMed ID: 2934589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-dependent binding of cytosolic proteins by chromaffin granules from adrenal medulla.
    Geisow MJ; Burgoyne RD
    J Neurochem; 1982 Jun; 38(6):1735-41. PubMed ID: 6978929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake of magnesium by chromaffin granules in vitro: role of the proton electrochemical gradient.
    Fiedler J; Daniels AJ
    J Neurochem; 1984 May; 42(5):1291-7. PubMed ID: 6707633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2+ binding to chromaffin vesicle matrix proteins: effect of pH, Mg2+, and ionic strength.
    Reiffen FU; Gratzl M
    Biochemistry; 1986 Jul; 25(15):4402-6. PubMed ID: 3756146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand binding to sarcoplasmic reticulum. The effects of Ca2+, Mg2+, and ATP binding on the fluorescence of membrane-bound pyrene.
    Habercom MS; Cheung HC
    Arch Biochem Biophys; 1978 Dec; 191(2):756-63. PubMed ID: 742899
    [No Abstract]   [Full Text] [Related]  

  • 8. Synthesis of ATP by an artificially imposed electrochemical proton gradient in chromaffin granule ghosts.
    Roisin MP; Scherman D; Henry JP
    FEBS Lett; 1980 Jun; 115(1):143-7. PubMed ID: 7389914
    [No Abstract]   [Full Text] [Related]  

  • 9. Calcium-dependent calmodulin binding to chromaffin granule membranes: presence of a 65-kilodalton calmodulin-binding protein.
    Bader MF; Hikita T; Trifaró JM
    J Neurochem; 1985 Feb; 44(2):526-39. PubMed ID: 2981287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the chromobindins. Soluble proteins that bind to the chromaffin granule membrane in the presence of Ca2+.
    Creutz CE; Dowling LG; Sando JJ; Villar-Palasi C; Whipple JH; Zaks WJ
    J Biol Chem; 1983 Dec; 258(23):14664-74. PubMed ID: 6227626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and immunological evidence for a calcium pump in chromaffin granules.
    King SC; Ellenberger TE; Goldin SM
    Biochem Biophys Res Commun; 1988 Sep; 155(2):656-63. PubMed ID: 2971354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ and proton transport in chromaffin granule membranes: a proton NMR study.
    Yoon PS; Sharp RR
    Biochemistry; 1985 Dec; 24(25):7269-73. PubMed ID: 3936546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP-stimulated accumulation of calcium by chromaffin granules and mitochondria from the adrenal medulla.
    von Grafenstein HR; Neumann E
    Biochem Biophys Res Commun; 1983 Nov; 117(1):245-51. PubMed ID: 6607051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of junctional terminal cisternae from mammalian fast skeletal muscle sarcoplasmic reticulum.
    Chu A; Volpe P; Costello B; Fleischer S
    Biochemistry; 1986 Dec; 25(25):8315-24. PubMed ID: 2434126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and reconstitution of the 32Pi-ATP exchange activity of bovine chromaffin granule membrane.
    Roisin MP; Henry JP
    Biochim Biophys Acta; 1982 Aug; 681(2):292-9. PubMed ID: 7115699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-dependent [3H]Met-enkephalin uptake by bovine adrenal chromaffin granule membrane.
    Takeda F; Takeda M; Shimada A; Konno K
    Brain Res; 1985 Oct; 344(2):220-6. PubMed ID: 4041872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of chemical probes with sarcoplasmic reticulum membranes.
    Vale MG; Carvalho AP
    Biochim Biophys Acta; 1980 Oct; 601(3):620-9. PubMed ID: 6448073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Activation of the caffeine center of the sarcoplasmic reticulum at a reduced concentration of magnesium ions].
    Ritov VB; Budina NB; Vekshina OM
    Biull Eksp Biol Med; 1985 Jan; 99(1):53-5. PubMed ID: 3967072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reserpine binding to bovine chromaffin granule membranes. Characterization and comparison with dihydrotetrabenazine binding.
    Scherman D; Henry JP
    Mol Pharmacol; 1984 Jan; 25(1):113-22. PubMed ID: 6708929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The binding of ATP and Mg2+ to the calcium adenosinetriphosphatase of sarcoplasmic reticulum follows a random mechanism.
    Reinstein J; Jencks WP
    Biochemistry; 1993 Jul; 32(26):6632-42. PubMed ID: 8329390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.