These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 6705729)
21. Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Royaux IE; Suzuki K; Mori A; Katoh R; Everett LA; Kohn LD; Green ED Endocrinology; 2000 Feb; 141(2):839-45. PubMed ID: 10650967 [TBL] [Abstract][Full Text] [Related]
22. A sensitive thyrotropin (TSH) bioassay based on iodide uptake in rat FRTL-5 thyroid cells: comparison with the adenosine 3',5'-monophosphate response to human serum TSH and enzymatically deglycosylated bovine and human TSH. Nissim M; Lee KO; Petrick PA; Dahlberg PA; Weintraub BD Endocrinology; 1987 Oct; 121(4):1278-87. PubMed ID: 2820695 [TBL] [Abstract][Full Text] [Related]
23. Studies on the in vitro cytotoxic effect of amiodarone. Chiovato L; Martino E; Tonacchera M; Santini F; Lapi P; Mammoli C; Braverman LE; Pinchera A Endocrinology; 1994 May; 134(5):2277-82. PubMed ID: 8156930 [TBL] [Abstract][Full Text] [Related]
24. Regulation by thyroid-stimulating hormone of sodium/iodide symporter gene expression and protein levels in FRTL-5 cells. Kogai T; Endo T; Saito T; Miyazaki A; Kawaguchi A; Onaya T Endocrinology; 1997 Jun; 138(6):2227-32. PubMed ID: 9165005 [TBL] [Abstract][Full Text] [Related]
25. Follicular thyroglobulin suppresses iodide uptake by suppressing expression of the sodium/iodide symporter gene. Suzuki K; Mori A; Saito J; Moriyama E; Ullianich L; Kohn LD Endocrinology; 1999 Nov; 140(11):5422-30. PubMed ID: 10537174 [TBL] [Abstract][Full Text] [Related]
26. Long-term effect of norepinephrine on iodide uptake in FRTL-5 cells. Juvenal GJ; Pregliasco LB; Krawiec L; Bocanera LV; Silberschmidt D; Pisarev MA Thyroid; 1997 Oct; 7(5):795-800. PubMed ID: 9349587 [TBL] [Abstract][Full Text] [Related]
27. Autoregulation by iodine of thyroid protein synthesis: influence of iodine on amino acid transport in cultured thyroid cells. Filetti S; Rapoport B Endocrinology; 1984 Apr; 114(4):1379-85. PubMed ID: 6705741 [TBL] [Abstract][Full Text] [Related]
28. Ascorbate uptake by ROS 17/2.8 osteoblast-like cells: substrate specificity and sensitivity to transport inhibitors. Dixon SJ; Kulaga A; Jaworski EM; Wilson JX J Bone Miner Res; 1991 Jun; 6(6):623-9. PubMed ID: 1887825 [TBL] [Abstract][Full Text] [Related]
29. Sulfate transport in human placenta: further evidence for a sodium-independent mechanism. Cole DE; Rastogi N Biochim Biophys Acta; 1991 May; 1064(2):287-92. PubMed ID: 2036444 [TBL] [Abstract][Full Text] [Related]
30. Epithelial rat thyroid cell clones, escaping from transforming growth factor beta negative growth control, are still inhibited by this factor in the ability to trap iodide. Coppa A; Mincione G; Mammarella S; Ranieri A; Colletta G Cell Growth Differ; 1995 Mar; 6(3):281-90. PubMed ID: 7794796 [TBL] [Abstract][Full Text] [Related]
31. Comparison of effects of thyrotropin, phorbol esters, norepinephrine, and carbachol on iodide organification in dog thyroid slices, follicles, and cultured cells. Rani CS; Field JB Endocrinology; 1988 May; 122(5):1915-22. PubMed ID: 2452073 [TBL] [Abstract][Full Text] [Related]
32. Opposite regulation of deoxyribonucleic acid synthesis and iodide uptake in rat thyroid cells by basic fibroblast growth factor: correlation with opposite regulation of c-fos and thyrotropin receptor gene expression. Isozaki O; Emoto N; Tsushima T; Sato Y; Shizume K; Demura H; Akamizu T; Kohn LD Endocrinology; 1992 Dec; 131(6):2723-32. PubMed ID: 1332847 [TBL] [Abstract][Full Text] [Related]
33. The physiology of anion transport in red cells. Brahm J Prog Hematol; 1986; 14():1-21. PubMed ID: 2418461 [No Abstract] [Full Text] [Related]
34. Effect of actinomycin D on iodide transport in FRTL-5 thyroid cells. Marcocci C; Cohen JL; Grollman EF Endocrinology; 1984 Dec; 115(6):2123-32. PubMed ID: 6499763 [TBL] [Abstract][Full Text] [Related]
35. Effects of TSH on iodide transport by mouse thyroid lobes in vitro. Williams JA; Malayan SA Endocrinology; 1975 Jul; 97(1):162-8. PubMed ID: 166827 [TBL] [Abstract][Full Text] [Related]
36. Characterization of the rat thyroid iodide transporter using anti-peptide antibodies. Relationship between its expression and activity. Paire A; Bernier-Valentin F; Selmi-Ruby S; Rousset B J Biol Chem; 1997 Jul; 272(29):18245-9. PubMed ID: 9218462 [TBL] [Abstract][Full Text] [Related]
37. In vitro effect of cilazaprilat on sodium-potassium transport systems in human erythrocytes. Lijnen P Methods Find Exp Clin Pharmacol; 1990 Mar; 12(2):91-4. PubMed ID: 2319841 [TBL] [Abstract][Full Text] [Related]
38. Effects of epidermal growth factor on basolateral iodide uptake and apical iodide permeability in filter-cultured thyroid epithelium. Nilsson M; Ericson LE Endocrinology; 1994 Oct; 135(4):1428-36. PubMed ID: 7925105 [TBL] [Abstract][Full Text] [Related]
39. Retinoic acid increases sodium/iodide symporter mRNA levels in human thyroid cancer cell lines and suppresses expression of functional symporter in nontransformed FRTL-5 rat thyroid cells. Schmutzler C; Winzer R; Meissner-Weigl J; Köhrle J Biochem Biophys Res Commun; 1997 Nov; 240(3):832-8. PubMed ID: 9398654 [TBL] [Abstract][Full Text] [Related]
40. The interaction of signal transduction pathways in FRTL5 thyroid follicular cells: studies with stable expression of beta 2-adrenergic receptors. Tsuzaki S; Cone RD; Frazier AL; Moses AC Endocrinology; 1991 Mar; 128(3):1359-68. PubMed ID: 1847855 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]