These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 6705788)
1. Pyridine-nucleotide oxidation, Ca2+ cycling and membrane damage during tert-butyl hydroperoxide metabolism by rat-liver mitochondria. Bellomo G; Martino A; Richelmi P; Moore GA; Jewell SA; Orrenius S Eur J Biochem; 1984 Apr; 140(1):1-6. PubMed ID: 6705788 [TBL] [Abstract][Full Text] [Related]
2. Hydroperoxide-stimulated release of calcium from rat liver and AS-30D hepatoma mitochondria. Fiskum G; Pease A Cancer Res; 1986 Jul; 46(7):3459-63. PubMed ID: 3708577 [TBL] [Abstract][Full Text] [Related]
3. Quantitative and mechanistic aspects of the hydroperoxide-induced release of Ca2+ from rat liver mitochondria. Frei B; Winterhalter KH; Richter C Eur J Biochem; 1985 Jun; 149(3):633-9. PubMed ID: 2988954 [TBL] [Abstract][Full Text] [Related]
4. Hydroperoxide-induced loss of pyridine nucleotides and release of calcium from rat liver mitochondria. Lötscher HR; Winterhalter KH; Carafoli E; Richter C J Biol Chem; 1980 Oct; 255(19):9325-30. PubMed ID: 6773965 [TBL] [Abstract][Full Text] [Related]
5. Hydroperoxides can modulate the redox state of pyridine nucleotides and the calcium balance in rat liver mitochondria. Lötscher HR; Winterhalter KH; Carafoli E; Richter C Proc Natl Acad Sci U S A; 1979 Sep; 76(9):4340-4. PubMed ID: 41241 [TBL] [Abstract][Full Text] [Related]
6. t-Butylhydroperoxide-induced Ca2+ efflux from liver mitochondria in the presence of physiological concentrations of Mg2+ and ATP. Bernardes CF; Pereira da Silva L; Vercesi AE Biochim Biophys Acta; 1986 Jun; 850(1):41-8. PubMed ID: 2423127 [TBL] [Abstract][Full Text] [Related]
7. Metabolism of pyridine nucleotides in cultured rat hepatocytes intoxicated with tert-butyl hydroperoxide. Yamamoto K; Farber JL Biochem Pharmacol; 1992 Mar; 43(5):1119-26. PubMed ID: 1554384 [TBL] [Abstract][Full Text] [Related]
8. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities. Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984 [TBL] [Abstract][Full Text] [Related]
9. ATP prevents both hydroperoxide-induced hydrolysis of pyridine nucleotides and release of calcium in rat liver mitochondria. Hofstetter W; Mühlebach T; Lötscher HR; Winterhalter KH; Richter C Eur J Biochem; 1981 Jul; 117(2):361-7. PubMed ID: 6268408 [TBL] [Abstract][Full Text] [Related]
10. The metabolism of menadione impairs the ability of rat liver mitochondria to take up and retain calcium. Bellomo G; Jewell SA; Orrenius S J Biol Chem; 1982 Oct; 257(19):11558-62. PubMed ID: 7118897 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species. Nieminen AL; Byrne AM; Herman B; Lemasters JJ Am J Physiol; 1997 Apr; 272(4 Pt 1):C1286-94. PubMed ID: 9142854 [TBL] [Abstract][Full Text] [Related]
12. Menadione (2-methyl-1,4-naphthoquinone)-induced Ca2+ release from rat-liver mitochondria is caused by NAD(P)H oxidation. Moore GA; O'Brien PJ; Orrenius S Xenobiotica; 1986 Sep; 16(9):873-82. PubMed ID: 3020812 [TBL] [Abstract][Full Text] [Related]
13. Butylated hydroxytoluene prevents cumene hydroperoxide-induced Ca2+ release from liver mitochondria by inhibiting pyridine nucleotide hydrolysis. Gogvadze V; Kass GE; Boyer CS; Zhukova A; Kim Y; Orrenius S Biochem Biophys Res Commun; 1992 Jun; 185(2):698-704. PubMed ID: 1610362 [TBL] [Abstract][Full Text] [Related]
14. t-Butylhydroperoxide and gliotoxin stimulate Ca2+ release from rat skeletal muscle mitochondria. Silva JP; Winterhalter KH; Richter C Redox Rep; 1997; 3(5-6):331-41. PubMed ID: 9754333 [TBL] [Abstract][Full Text] [Related]
15. Sublethal oxidant stress induces a reversible increase in intracellular calcium dependent on NAD(P)H oxidation in rat alveolar macrophages. Livingston FR; Lui EM; Loeb GA; Forman HJ Arch Biochem Biophys; 1992 Nov; 299(1):83-91. PubMed ID: 1444455 [TBL] [Abstract][Full Text] [Related]
16. N-acetyl-p-benzoquinone imine induces Ca2+ release from mitochondria by stimulating pyridine nucleotide hydrolysis. Weis M; Kass GE; Orrenius S; Moldéus P J Biol Chem; 1992 Jan; 267(2):804-9. PubMed ID: 1730671 [TBL] [Abstract][Full Text] [Related]
17. Further characterization of the events involved in mitochondrial Ca2+ release and pore formation by prooxidants. Weis M; Kass GE; Orrenius S Biochem Pharmacol; 1994 Jun; 47(12):2147-56. PubMed ID: 7518235 [TBL] [Abstract][Full Text] [Related]
18. Quinone toxicity in hepatocytes: studies on mitochondrial Ca2+ release induced by benzoquinone derivatives. Moore GA; Rossi L; Nicotera P; Orrenius S; O'Brien PJ Arch Biochem Biophys; 1987 Dec; 259(2):283-95. PubMed ID: 3426229 [TBL] [Abstract][Full Text] [Related]
19. Increase in cytosolic Ca2+ concentration during t-butyl hydroperoxide metabolism by isolated hepatocytes involves NADPH oxidation and mobilization of intracellular Ca2+ stores. Bellomo G; Thor H; Orrenius S FEBS Lett; 1984 Mar; 168(1):38-42. PubMed ID: 6423407 [TBL] [Abstract][Full Text] [Related]
20. Cyclosporin A protects hepatocytes against prooxidant-induced cell killing. A study on the role of mitochondrial Ca2+ cycling in cytotoxicity. Kass GE; Juedes MJ; Orrenius S Biochem Pharmacol; 1992 Nov; 44(10):1995-2003. PubMed ID: 1449518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]