These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 6706760)

  • 1. Exercise efficiency during arm ergometry: effects of speed and work rate.
    Powers SK; Beadle RE; Mangum M
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Feb; 56(2):495-9. PubMed ID: 6706760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic efficiency during arm and leg exercise at the same relative intensities.
    Kang J; Robertson RJ; Goss FL; Dasilva SG; Suminski RR; Utter AC; Zoeller RF; Metz KF
    Med Sci Sports Exerc; 1997 Mar; 29(3):377-82. PubMed ID: 9139177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscular efficiency during steady-rate exercise: effects of speed and work rate.
    Gaesser GA; Brooks GA
    J Appl Physiol; 1975 Jun; 38(6):1132-9. PubMed ID: 1141128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical efficiency during hand-rim wheelchair propulsion: effects of base-line subtraction and power output.
    Hintzy F; Tordi N
    Clin Biomech (Bristol, Avon); 2004 May; 19(4):343-9. PubMed ID: 15109753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of crank rate on physiological responses and exercise efficiency using a range of submaximal workloads during arm crank ergometry.
    Smith PM; Doherty M; Price MJ
    Int J Sports Med; 2006 Mar; 27(3):199-204. PubMed ID: 16541375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of cadence and power output upon physiological and biomechanical responses to incremental arm-crank ergometry.
    Price MJ; Collins L; Smith PM; Goss-Sampson M
    Appl Physiol Nutr Metab; 2007 Aug; 32(4):686-92. PubMed ID: 17622283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Load and velocity of contraction influence gross and delta mechanical efficiency.
    Sidossis LS; Horowitz JF; Coyle EF
    Int J Sports Med; 1992 Jul; 13(5):407-11. PubMed ID: 1521959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscular efficiency during steady-rate exercise. II. Effects of walking speed and work rate.
    Donovan CM; Brooks GA
    J Appl Physiol Respir Environ Exerc Physiol; 1977 Sep; 43(3):431-9. PubMed ID: 914714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the base-line determination on work efficiency during submaximal cycling.
    Hintzy-Cloutier F; Zameziati K; Belli A
    J Sports Med Phys Fitness; 2003 Mar; 43(1):51-6. PubMed ID: 12629462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneously chosen crank rate variations in submaximal arm exercise with inexperienced subjects. Effects on cardiorespiratory and efficiency parameters.
    Marais G; Dupont L; Maillet M; Weissland T; Vanvelcenaher J; Pelayo P
    Int J Sports Med; 2002 Feb; 23(2):120-4. PubMed ID: 11842359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of an increasing versus constant crank rate on peak physiological responses during incremental arm crank ergometry.
    Price MJ; Bottoms L; Smith PM; Nicholettos A
    J Sports Sci; 2011 Feb; 29(3):263-9. PubMed ID: 21154011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variations in cardiovascular response accompanying differences in arm-cranking rate.
    Keyser RE; Andres FF; Wojta DM; Gullett SL
    Arch Phys Med Rehabil; 1988 Nov; 69(11):941-5. PubMed ID: 3190418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peak oxygen uptake in arm ergometry: effects of testing protocol.
    Walker R; Powers S; Stuart MK
    Br J Sports Med; 1986 Mar; 20(1):25-6. PubMed ID: 3697598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bicycle pedalling forces as a function of pedalling rate and power output.
    Patterson RP; Moreno MI
    Med Sci Sports Exerc; 1990 Aug; 22(4):512-6. PubMed ID: 2402213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of body mass on exercise efficiency and VO2 during steady-state cycling.
    Berry MJ; Storsteen JA; Woodard CM
    Med Sci Sports Exerc; 1993 Sep; 25(9):1031-7. PubMed ID: 8231771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of arm crank strategy on physiological responses and mechanical efficiency during submaximal exercise.
    Goosey-Tolfrey VL; Sindall P
    J Sports Sci; 2007 Feb; 25(4):453-60. PubMed ID: 17365532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic and circulatory responses to wheelchair and arm crank exercise.
    Sawka MN; Glaser RM; Wilde SW; von Luhrte TC
    J Appl Physiol Respir Environ Exerc Physiol; 1980 Nov; 49(5):784-8. PubMed ID: 6776077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protocol dependency of VO2max during arm cycle ergometry in males with quadriplegia.
    Lasko-McCarthey P; Davis JA
    Med Sci Sports Exerc; 1991 Sep; 23(9):1097-101. PubMed ID: 1943632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiorespiratory and efficiency responses during arm and leg exercises with spontaneously chosen crank and pedal rates.
    Marais G; Dupont L; Maillet M; Weissland T; Vanvelcenaher J; Pelayo P
    Ergonomics; 2002 Jul; 45(9):631-9. PubMed ID: 12217084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower limb influence on standing arm-cranking ('grinding').
    Neville V; Zaher N; Pain MT; Folland JP
    Int J Sports Med; 2009 Oct; 30(10):713-8. PubMed ID: 19764007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.