BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6706939)

  • 1. Role of calcium as an inhibitor of rat liver carbamylphosphate synthetase I.
    Cerdan S; Lusty CJ; Davis KN; Jacobsohn JA; Williamson JR
    J Biol Chem; 1984 Jan; 259(1):323-31. PubMed ID: 6706939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proximate sulfhydryl groups in the acetylglutamate complex of rat carbamylphosphate synthetase I: their reaction with the affinity reagent 5'-p-fluorosulfonylbenzoyladenosine.
    Marshall M; Fahien LA
    Arch Biochem Biophys; 1985 Aug; 241(1):200-14. PubMed ID: 4026316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of Ca2+ of carbamoylphosphate synthetase (ammonia).
    Meijer AJ; van Woerkom GM; Steinman R; Williamson JR
    J Biol Chem; 1981 Apr; 256(7):3443-6. PubMed ID: 6782102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some aspects of the kinetics of rat liver pyruvate carboxylase.
    Wimhurst JM; Manchester KL
    Biochem J; 1970 Nov; 120(1):79-93. PubMed ID: 4321933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of carbamoyl-phosphate synthetase (ammonia) in rat-liver mitochondria made permeable with toluene.
    Lof C; Cohen M; Vermeulen LP; van Roermund CW; Wanders RJ; Meijer AJ
    Eur J Biochem; 1983 Sep; 135(2):251-8. PubMed ID: 6884364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model for the regulation of brain adenylate cyclase by ionic equilibria.
    Ohanian H; Borhanian K; de Farias S; Bennun A
    J Bioenerg Biomembr; 1981 Dec; 13(5-6):317-55. PubMed ID: 7334023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of carbamoyl phosphate synthetase (ammonia) by elastase as a probe to investigate binding of the substrates.
    Guadalajara AM; Rubio V; GrisolĂ­a S
    Biochem Biophys Res Commun; 1983 Nov; 117(1):238-44. PubMed ID: 6559079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of mitochondrial carbamoyl phosphate synthetase induced by ascorbate, oxygen, and Fe3+ in the presence of acetylglutamate: protection by ATP and HCO3- and lack of inactivation of ornithine transcarbamylase.
    Alonso E; Rubio V
    Arch Biochem Biophys; 1987 Nov; 258(2):342-50. PubMed ID: 2823712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of magnesium ion (Mg2+) and the magnesium adenosine triphosphate ion (MgATP2-) on pigeon liver pyruvate carboxylase.
    Dugal BS; Louis BM
    Enzyme; 1975; 20(2):98-110. PubMed ID: 236182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbamoyl-phosphate synthetase I. Kinetics of binding and dissociation of acetylglutamate and of activation and deactivation.
    Britton HG; Rubio V
    Eur J Biochem; 1988 Feb; 171(3):615-22. PubMed ID: 3345748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-acetylglutamate-independent activity of carbamyl phosphate synthetase (ammonia): implications for the kinetic assay of acetylglutamate.
    Cohen NS
    Arch Biochem Biophys; 1984 Jul; 232(1):38-46. PubMed ID: 6742858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of N-acetyl-L-glutamate to rat liver carbamoyl phosphate synthetase (ammonia).
    Alonso E; Rubio V
    Eur J Biochem; 1983 Sep; 135(2):331-7. PubMed ID: 6884368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of metal ion activation and inhibition of CTP synthetase.
    Robertson JG; Villafranca JJ
    Biochemistry; 1993 Apr; 32(14):3769-77. PubMed ID: 8385490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Mn2+ on the exchange reaction of phosphoenolpyruvate carboxykinase in the presence of high concentrations of Mg2+.
    Satoh Y
    Biochim Biophys Acta; 1986 Aug; 872(3):177-82. PubMed ID: 3730399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamine- and N-acetyl-L-glutamate-dependent carbamoyl phosphate synthetase from Micropterus salmoides. Purification, properties, and inhibition by glutamine analogs.
    Casey CA; Anderson PM
    J Biol Chem; 1983 Jul; 258(14):8723-32. PubMed ID: 6602805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CaATP: the substrate, at low ATP concentrations, of Ca2+ ATPase from human erythrocyte membranes.
    Graf E; Penniston JT
    J Biol Chem; 1981 Feb; 256(4):1587-92. PubMed ID: 6450759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum?
    Smith GA; Vandenberg JI; Freestone NS; Dixon HB
    Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a role of 13S axonemal ATPase in modulation of ciliary microtubule sliding.
    Zanetti NC; Warner FD
    Cell Motil; 1982; 2(6):509-23. PubMed ID: 6220805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rat liver phosphoribosylpyrophosphate synthetase is activated by free Mg2+ in a manner that overcomes its inhibition by nucleotides.
    Sonoda T; Ishizuka T; Ishijima S; Kita K; Ahmad I; Tatibana M
    Biochim Biophys Acta; 1998 Sep; 1387(1-2):32-40. PubMed ID: 9748490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal requirements of a diadenosine pyrophosphatase from Bartonella bacilliformis: magnetic resonance and kinetic studies of the role of Mn2+.
    Conyers GB; Wu G; Bessman MJ; Mildvan AS
    Biochemistry; 2000 Mar; 39(9):2347-54. PubMed ID: 10694402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.