BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6707001)

  • 1. Regeneration of native bacteriorhodopsin structure from fragments.
    Liao MJ; Huang KS; Khorana HG
    J Biol Chem; 1984 Apr; 259(7):4200-4. PubMed ID: 6707001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of native bacteriorhodopsin structure following acetylation of epsilon-amino groups of Lys-30, -40, and -41.
    Abercrombie DM; Khorana HG
    J Biol Chem; 1986 Apr; 261(11):4875-80. PubMed ID: 3007477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of the carboxyl-terminal peptide does not affect refolding or function of bacteriorhodopsin as a light-dependent proton pump.
    Liao MJ; Khorana HG
    J Biol Chem; 1984 Apr; 259(7):4194-9. PubMed ID: 6707000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refolding of bacteriorhodopsin in lipid bilayers. A thermodynamically controlled two-stage process.
    Popot JL; Gerchman SE; Engelman DM
    J Mol Biol; 1987 Dec; 198(4):655-76. PubMed ID: 3430624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refolding of an integral membrane protein. Denaturation, renaturation, and reconstitution of intact bacteriorhodopsin and two proteolytic fragments.
    Huang KS; Bayley H; Liao MJ; London E; Khorana HG
    J Biol Chem; 1981 Apr; 256(8):3802-9. PubMed ID: 7217055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The site of attachment of retinal in bacteriorhodopsin. The epsilon-amino group in Lys-41 is not required for proton translocation.
    Huang KS; Liao MJ; Gupta CM; Royal N; Biemann K; Khorana HG
    J Biol Chem; 1982 Aug; 257(15):8596-9. PubMed ID: 6284736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regeneration of the native bacteriorhodopsin structure from two chymotryptic fragments.
    Liao MJ; London E; Khorana HG
    J Biol Chem; 1983 Aug; 258(16):9949-55. PubMed ID: 6885777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site of attachment of retinal in bacteriorhodopsin.
    Bayley H; Huang KS; Radhakrishnan R; Ross AH; Takagaki Y; Khorana HG
    Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2225-9. PubMed ID: 6941281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isomeric composition of retinal chromophore in dark-adapted bacteriorhodopsin.
    Maeda A; Iwasa T; Yoshizawa T
    J Biochem; 1977 Dec; 82(6):1599-604. PubMed ID: 599146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refolding of bacteriorhodopsin. Protease V8 fragmentation and chromophore reconstitution from proteolytic V8 fragments.
    Sigrist H; Wenger RH; Kislig E; Wüthrich M
    Eur J Biochem; 1988 Oct; 177(1):125-33. PubMed ID: 3181151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The C-terminus of bacteriorhodopsin is a random coil.
    Wallace BA; Kohl N
    Biochim Biophys Acta; 1984 Oct; 777(1):93-8. PubMed ID: 6487621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a carboxyl group in the vicinity of the retinal chromophore of bacteriorhodopsin.
    Herz JM; Hrabeta E; Packer L
    Biochem Biophys Res Commun; 1983 Jul; 114(2):872-81. PubMed ID: 6882459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The site of attachment of retinal in bacteriorhodopsin. A resonance Raman study.
    Rothschild KJ; Argade PV; Earnest TN; Huang KS; London E; Liao MJ; Bayley H; Khorana HG; Herzfeld J
    J Biol Chem; 1982 Aug; 257(15):8592-5. PubMed ID: 6807975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacteriorhodopsin precursor. Characterization and its integration into the purple membrane.
    Seehra JS; Khorana HG
    J Biol Chem; 1984 Apr; 259(7):4187-93. PubMed ID: 6706999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Denaturation and renaturation of bacteriorhodopsin in detergents and lipid-detergent mixtures.
    London E; Khorana HG
    J Biol Chem; 1982 Jun; 257(12):7003-11. PubMed ID: 7085614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-driven proton translocation by bacteriorhodopsin reconstituted with the phenyl analog of retinal.
    Bayley H; Radhakrishnan R; Huang KS; Khorana HG
    J Biol Chem; 1981 Apr; 256(8):3797-801. PubMed ID: 7217054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered protein-chromophore interaction in dicyclohexylcarbodiimide-modified purple membrane sheets.
    Renthal R; Brogley L; Vila J
    Biochim Biophys Acta; 1988 Sep; 935(2):109-14. PubMed ID: 3415982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstitution of bacteriorhodopsin from a mixture of a proteinase V8 fragment and two synthetic peptides.
    Ozawa S; Hayashi R; Masuda A; Iio T; Takahashi S
    Biochim Biophys Acta; 1997 Jan; 1323(1):145-53. PubMed ID: 9030221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light activates the reaction of bacteriorhodopsin aspartic acid-115 with dicyclohexylcarbodiimide.
    Renthal R; Cothran M; Espinoza B; Wall KA; Bernard M
    Biochemistry; 1985 Jul; 24(16):4275-9. PubMed ID: 3931674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of two chymotryptic fragments in the structure of renatured bacteriorhodopsin by neutron diffraction.
    Trewhella J; Popot JL; Zaccaï G; Engelman DM
    EMBO J; 1986 Nov; 5(11):3045-9. PubMed ID: 3792306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.