BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 6707004)

  • 1. Effect of atractylosides, palmitoyl coenzyme A, and anion transport inhibitors on translocation of nucleotide sugars and nucleotide sulfate into Golgi vesicles.
    Capasso JM; Hirschberg CB
    J Biol Chem; 1984 Apr; 259(7):4263-6. PubMed ID: 6707004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of glycosylation and sulfation in the Golgi apparatus: evidence for nucleotide sugar/nucleoside monophosphate and nucleotide sulfate/nucleoside monophosphate antiports in the Golgi apparatus membrane.
    Capasso JM; Hirschberg CB
    Proc Natl Acad Sci U S A; 1984 Nov; 81(22):7051-5. PubMed ID: 6095266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of nucleotides on translocation of sugar nucleotides and adenosine 3'-phosphate 5'-phosphosulfate into Golgi apparatus vesicles.
    Capasso JM; Hirschberg CB
    Biochim Biophys Acta; 1984 Oct; 777(1):133-9. PubMed ID: 6487615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of Golgi vesicle CMP-sialic acid and adenosine 3'-phosphate 5'-phosphosulfate transport into proteoliposomes.
    Milla ME; Hirschberg CB
    Proc Natl Acad Sci U S A; 1989 Mar; 86(6):1786-90. PubMed ID: 2928302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of sugar nucleotides into rat liver Golgi. A new Golgi marker activity.
    Sommers LW; Hirschberg CB
    J Biol Chem; 1982 Sep; 257(18):10811-7. PubMed ID: 7050120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of PAPS translocase: evidence for an antiport mechanism.
    Ozeran JD; Westley J; Schwartz NB
    Biochemistry; 1996 Mar; 35(12):3685-94. PubMed ID: 8619988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct photoaffinity labeling of proteins with adenosine 3'-[32P]phosphate 5'-phosphosulfate. Atractyloside inhibits labeling of a Mr = 34,000 protein in an adrenal medullary Golgi fraction.
    Lee RW; Suchanek C; Huttner WB
    J Biol Chem; 1984 Sep; 259(17):11153-6. PubMed ID: 6469998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translocation of adenosine 3'-phosphate 5'-phosphosulfate into rat liver Golgi vesicles.
    Schwarz JK; Capasso JM; Hirschberg CB
    J Biol Chem; 1984 Mar; 259(6):3554-9. PubMed ID: 6706970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of anion-specific inhibitors on the utilization of sugar nucleotides for N-linked carbohydrate unit assembly by thyroid endoplasmic reticulum vesicles.
    Spiro MJ; Spiro RG
    J Biol Chem; 1985 May; 260(9):5808-15. PubMed ID: 2580839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intralumenal pool and transport of CMP-N-acetylneuraminic acid, GDP-fucose and UDP-galactose. Study with plasma-membrane-permeabilized mouse thymocytes.
    Cacan R; Cecchelli R; Hoflack B; Verbert A
    Biochem J; 1984 Nov; 224(1):277-84. PubMed ID: 6508764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The transport and utilization of acetyl coenzyme A by rat liver Golgi vesicles. O-acetylated sialic acids are a major product.
    Varki A; Diaz S
    J Biol Chem; 1985 Jun; 260(11):6600-8. PubMed ID: 3997840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inflammation-induced transcriptional regulation of Golgi transporters required for the synthesis of sulfo sLex glycan epitopes.
    Huopaniemi L; Kolmer M; Niittymäki J; Pelto-Huikko M; Renkonen R
    Glycobiology; 2004 Dec; 14(12):1285-94. PubMed ID: 15269183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of galactosylation in the Golgi apparatus. A Chinese hamster ovary cell mutant deficient in translocation of UDP-galactose across Golgi vesicle membranes.
    Deutscher SL; Hirschberg CB
    J Biol Chem; 1986 Jan; 261(1):96-100. PubMed ID: 3510203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. O-acetylation and de-O-acetylation of sialic acids. O-acetylation of sialic acids in the rat liver Golgi apparatus involves an acetyl intermediate and essential histidine and lysine residues--a transmembrane reaction?
    Higa HH; Butor C; Diaz S; Varki A
    J Biol Chem; 1989 Nov; 264(32):19427-34. PubMed ID: 2509477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of sugar nucleotides and adenosine 3'-phosphate 5'-phosphosulfate into vesicles derived from the Golgi apparatus.
    Perez M; Hirschberg CB
    Biochim Biophys Acta; 1986 Sep; 864(2):213-22. PubMed ID: 3527269
    [No Abstract]   [Full Text] [Related]  

  • 16. Reconstitution, identification, and purification of the rat liver golgi membrane GDP-fucose transporter.
    Puglielli L; Hirschberg CB
    J Biol Chem; 1999 Dec; 274(50):35596-600. PubMed ID: 10585436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of adenosine triphosphate into endoplasmic reticulum proteoliposomes.
    Guillén E; Hirschberg CB
    Biochemistry; 1995 Apr; 34(16):5472-6. PubMed ID: 7727405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translocation of ATP into the lumen of rough endoplasmic reticulum-derived vesicles and its binding to luminal proteins including BiP (GRP 78) and GRP 94.
    Clairmont CA; De Maio A; Hirschberg CB
    J Biol Chem; 1992 Feb; 267(6):3983-90. PubMed ID: 1740446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is the adenine nucleotide translocator rate-limiting for oxidative phosphorylation?
    Stubbs M; Vignais PV; Krebs HA
    Biochem J; 1978 May; 172(2):333-42. PubMed ID: 666751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of rat renal luminal and contraluminal sulfate transport systems to DIDS.
    Bästlein C; Burckhardt G
    Am J Physiol; 1986 Feb; 250(2 Pt 2):F226-34. PubMed ID: 3946600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.