These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6707011)

  • 1. The reversibility of the ketoamine linkages of aldoses with proteins.
    Acharya AS; Sussman LG
    J Biol Chem; 1984 Apr; 259(7):4372-8. PubMed ID: 6707011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aldimine to ketoamine isomerization (Amadori rearrangement) potential at the individual nonenzymic glycation sites of hemoglobin A: preferential inhibition of glycation by nucleophiles at sites of low isomerization potential.
    Acharya AS; Roy RP; Dorai B
    J Protein Chem; 1991 Jun; 10(3):345-58. PubMed ID: 1910466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic analysis of the nonenzymatic glycosylation of hemoglobin.
    Higgins PJ; Bunn HF
    J Biol Chem; 1981 May; 256(10):5204-8. PubMed ID: 7228877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of deoxyhemoglobin S polymerization by glyceraldehyde.
    Acharya AS; Sussman LG; Jones WM; Manning JM
    Anal Biochem; 1984 Jan; 136(1):101-9. PubMed ID: 6711801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amadori rearrangement of glyceraldehyde-hemoglobin Schiff base adducts. A new procedure for the determination of ketoamine adducts in proteins.
    Acharya AS; Manning JM
    J Biol Chem; 1980 Aug; 255(15):7218-24. PubMed ID: 7391079
    [No Abstract]   [Full Text] [Related]  

  • 6. Reaction of glycolaldehyde with proteins: latent crosslinking potential of alpha-hydroxyaldehydes.
    Acharya AS; Manning JM
    Proc Natl Acad Sci U S A; 1983 Jun; 80(12):3590-4. PubMed ID: 6574500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-linking of proteins by aldotriose: reaction of the carbonyl function of the keto amines generated in situ with amino groups.
    Acharya AS; Cho YJ; Manjula BN
    Biochemistry; 1988 Jun; 27(12):4522-9. PubMed ID: 3166996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductive hydroxyethylation of hemoglobin A. Functional properties of hemoglobin A selectively hydroxyethylated or dihydroxypropylated at the alpha-amino groups.
    Acharya AS; Sussman LG
    J Biol Chem; 1983 Nov; 258(22):13761-7. PubMed ID: 6643451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical implications of acetaldehyde adducts with hemoglobin.
    Peterson CM; Nguyen LB
    Prog Clin Biol Res; 1985; 183():19-30. PubMed ID: 3901019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonenzymatic glycosylation of human hemoglobin at multiple sites.
    Shapiro R; McManus M; Garrick L; McDonald MJ; Bunn HF
    Metabolism; 1979 Apr; 28(4 Suppl 1):427-30. PubMed ID: 122295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycation of amino groups in protein. Studies on the specificity of modification of RNase by glucose.
    Watkins NG; Thorpe SR; Baynes JW
    J Biol Chem; 1985 Sep; 260(19):10629-36. PubMed ID: 4030761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic modification at the amino termini of hemoglobin A.
    Acharya AS; Bobelis DJ; White SP
    J Biol Chem; 1994 Jan; 269(4):2796-804. PubMed ID: 8300612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 13C NMR investigation of nonenzymatic glucosylation of protein. Model studies using RNase A.
    Neglia CI; Cohen HJ; Garber AR; Ellis PD; Thorpe SR; Baynes JW
    J Biol Chem; 1983 Dec; 258(23):14279-83. PubMed ID: 6643480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Schiff base adducts of glyceraldehyde with hemoglobin. Differences in the Amadori rearrangement at the alpha-amino groups.
    Acharya AS; Sussman LG; Manning JM
    J Biol Chem; 1983 Feb; 258(4):2296-302. PubMed ID: 6822561
    [No Abstract]   [Full Text] [Related]  

  • 15. Dihydroxypropylation of amino groups of proteins: use of glyceraldehyde as a reversible agent for reductive alkylation.
    Acharya AS; Manjula BN
    Biochemistry; 1987 Jun; 26(12):3524-30. PubMed ID: 3651395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amadori rearrangement potential of hemoglobin at its glycation sites is dependent on the three-dimensional structure of protein.
    Nacharaju P; Acharya AS
    Biochemistry; 1992 Dec; 31(50):12673-9. PubMed ID: 1472504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure and formation of the glucose 6-phosphate adduct of hemoglobin A: a 31P-NMR study.
    Ropiak IK; Fabry ME
    Biochim Biophys Acta; 1987 Jan; 911(1):109-13. PubMed ID: 3790591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The carbamate equilibrium of alpha- and epsilon-amino groups of human hemoglobin at 37 degrees C.
    Gros G; Rollema HS; Forster RE
    J Biol Chem; 1981 Jun; 256(11):5471-80. PubMed ID: 6165715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specifically carboxymethylated hemoglobin as an analogue of carbamino hemoglobin. Solution and X-ray studies of carboxymethylated hemoglobin and X-ray studies of carbamino hemoglobin.
    Fantl WJ; Di Donato A; Manning JM; Rogers PH; Arnone A
    J Biol Chem; 1987 Sep; 262(26):12700-13. PubMed ID: 3114261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selectivity in the modification of the alpha-amino groups of hemoglobin on reductive alkylation with aliphatic carbonyl compounds. Influence of derivatization on the polymerization of hemoglobin S.
    Acharya AS; Sussman LG; Manning JM
    J Biol Chem; 1985 May; 260(10):6039-46. PubMed ID: 3997812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.