BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 670702)

  • 1. Trinitrophenylated red cells (E-TNP) as a model for antibody-independent activation of the complement system via the classical pathway.
    Loos M; Thesen R
    J Immunol; 1978 Jul; 121(1):24-8. PubMed ID: 670702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modulation of classical pathway activation: C2 and C3 convertase formation and regulation on sheep, guinea pig, and human erythrocytes.
    Brown EJ; Ramsey J; Hammer CH; Frank MM
    J Immunol; 1983 Jul; 131(1):403-8. PubMed ID: 6602833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of trinitrophenylated red cells for antibody independent lysis by complement.
    Thesen R; Back W; Loos M
    J Immunol Methods; 1978; 20():201-9. PubMed ID: 649960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of the human classical complement pathway by a mouse monoclonal hybrid IgG1-2a monovalent anti-TNP antibody bound to TNP-conjugated cells.
    Couderc J; Kazatchkine MD; Ventura M; Duc HT; Maillet F; Thobie N; Liacopoulos P
    J Immunol; 1985 Jan; 134(1):486-91. PubMed ID: 3917282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EAC4 and EAC14 production without purified Ci.
    Linscott WD
    J Immunol; 1975 Dec; 115(6):1625-30. PubMed ID: 241767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysis of sensitized sheep erythrocytes in human sera deficient in the second component of complement.
    Knutzen Steuer KL; Sloan LB; Oglesby TJ; Farries TC; Nickells MW; Densen P; Harley JB; Atkinson JP
    J Immunol; 1989 Oct; 143(7):2256-61. PubMed ID: 2506280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Requirement for the alternative pathway as well as C4 and C2 in complement-dependent hemolysis via the lectin pathway.
    Suankratay C; Zhang XH; Zhang Y; Lint TF; Gewurz H
    J Immunol; 1998 Mar; 160(6):3006-13. PubMed ID: 9510205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leukocyte-derived complement inhibitor. IV. The functional properties of C1 bound to erythrocytes pretreated with leukocyte culture supernatant.
    Bernard A; Walter W; Teshima H; Boumsell L; Good RA; Day NK
    J Immunol; 1976 Oct; 117(4):1117-26. PubMed ID: 977945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of concanavalin A on the classical complement pathway.
    Langone JJ; Boyle MD; Borsos T
    J Immunol; 1977 May; 118(5):1622-5. PubMed ID: 858916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibody-independent activation of C1. II. Evidence for two classes of nonimmune activators of the classical pathway of complement.
    Peitsch MC; Kovacsovics TJ; Tschopp J; Isliker H
    J Immunol; 1987 Mar; 138(6):1871-6. PubMed ID: 3029223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for restriction of the ability of complement to lyse homologous erythrocytes.
    Houle JJ; Hoffmann EM
    J Immunol; 1984 Sep; 133(3):1444-52. PubMed ID: 6430999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The C4 and C2 but not C1 components of complement are responsible for the complement activation triggered by the Ra-reactive factor.
    Ji YH; Matsushita M; Okada H; Fujita T; Kawakami M
    J Immunol; 1988 Dec; 141(12):4271-5. PubMed ID: 3058802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-bound capsular polysaccharide of type Ia group B Streptococcus mediates C1 binding and activation of the classic complement pathway.
    Levy NJ; Kasper DL
    J Immunol; 1986 Jun; 136(11):4157-62. PubMed ID: 3517165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of the first component of complement, C1, by a monoclonal antibody recognizing the C chain of C1q.
    Heinz HP; Burger R; Golan MD; Loos M
    J Immunol; 1984 Feb; 132(2):804-8. PubMed ID: 6606678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of specific antibody on antibody-independent interactions between E. coli J5 and human complement.
    Betz SJ; Page N; Estrade C; Isliker H
    J Immunol; 1982 Feb; 128(2):707-11. PubMed ID: 7033382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consumption of classical complement components by heart subcellular membranes in vitro and in patients after acute myocardial infarction.
    Pinckard RN; Olson MS; Giclas PC; Terry R; Boyer JT; O'Rourke RA
    J Clin Invest; 1975 Sep; 56(3):740-50. PubMed ID: 808560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibody-independent C1 activation by E. coli.
    Tenner AJ; Ziccardi RJ; Cooper NR
    J Immunol; 1984 Aug; 133(2):886-91. PubMed ID: 6376630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibody-independent killing of gram-negative bacteria via the classical pathway.
    Clas F; Loos M
    Behring Inst Mitt; 1984 Nov; (76):59-74. PubMed ID: 6525148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complement activation is not required for IgG-mediated suppression of the antibody response.
    Heyman B; Wiersma E; Nose M
    Eur J Immunol; 1988 Nov; 18(11):1739-43. PubMed ID: 3060362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibody-independent interactions between Escherichia coli J5 and human complement components.
    Betz SJ; Isliker H
    J Immunol; 1981 Nov; 127(5):1748-54. PubMed ID: 6795260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.