These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 6707198)

  • 1. Taurocholate transport by rat liver canalicular membrane vesicles. Evidence for the presence of an Na+-independent transport system.
    Inoue M; Kinne R; Tran T; Arias IM
    J Clin Invest; 1984 Mar; 73(3):659-63. PubMed ID: 6707198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles.
    Duffy MC; Blitzer BL; Boyer JL
    J Clin Invest; 1983 Oct; 72(4):1470-81. PubMed ID: 6630516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium ion-coupled uptake of taurocholate by rat-liver plasma membrane vesicles.
    Ruifrok PG; Meijer DK
    Liver; 1982 Mar; 2(1):28-34. PubMed ID: 7176836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taurocholate transport by rat intestinal basolateral membrane vesicles. Evidence for the presence of an anion exchange transport system.
    Weinberg SL; Burckhardt G; Wilson FA
    J Clin Invest; 1986 Jul; 78(1):44-50. PubMed ID: 3722383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bile acid transport by basal membrane vesicles of human term placental trophoblast.
    Marin JJ; Serrano MA; el-Mir MY; Eleno N; Boyd CA
    Gastroenterology; 1990 Nov; 99(5):1431-8. PubMed ID: 2210249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Taurocholate--sodium co-transport by brush-border membrane vesicles isolated from rat ileum.
    Lücke H; Stange G; Kinne R; Murer H
    Biochem J; 1978 Sep; 174(3):951-8. PubMed ID: 581553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. Evidence for an electrogenic canalicular organic anion carrier.
    Meier PJ; St Meier-Abt A; Barrett C; Boyer JL
    J Biol Chem; 1984 Aug; 259(16):10614-22. PubMed ID: 6469975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multispecificity of Na+-dependent taurocholate uptake in basolateral (sinusoidal) rat liver plasma membrane vesicles.
    Zimmerli B; Valantinas J; Meier PJ
    J Pharmacol Exp Ther; 1989 Jul; 250(1):301-8. PubMed ID: 2746502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-dependent taurocholate transport by rat liver canalicular membrane vesicles.
    Adachi Y; Kobayashi H; Kurumi Y; Shouji M; Kitano M; Yamamoto T
    Hepatology; 1991 Oct; 14(4 Pt 1):655-9. PubMed ID: 1916666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two distinct mechanisms for taurocholate uptake in subcellular fractions from rat liver.
    Simion FA; Fleischer B; Fleischer S
    J Biol Chem; 1984 Sep; 259(17):10814-22. PubMed ID: 6469982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP-dependent transport of the linear renin-inhibiting peptide EMD 51921 by canalicular plasma membrane vesicles of rat liver: evidence of drug-stimulatable ATP-hydrolysis.
    Ziegler K; Kolac C; Ising W
    Biochim Biophys Acta; 1994 Dec; 1196(2):209-17. PubMed ID: 7841185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taurocholate transport by basolateral plasma membrane vesicles isolated from developing rat liver.
    Suchy FJ; Courchene SM; Blitzer BL
    Am J Physiol; 1985 Jun; 248(6 Pt 1):G648-54. PubMed ID: 2408482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taurocholate transport by basolateral plasma membrane vesicles isolated from human liver.
    Novak DA; Ryckman FC; Suchy FJ
    Hepatology; 1989 Oct; 10(4):447-53. PubMed ID: 2777205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A study on the mechanism of bile acid transport in the human placenta (the passive transport system of taurocholate across microvillous membrane)].
    Iioka H; Moriyama I; Hino K; Ichijo M
    Nihon Sanka Fujinka Gakkai Zasshi; 1986 Jun; 38(6):837-44. PubMed ID: 3734517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new method for the rapid isolation of basolateral plasma membrane vesicles from rat liver. Characterization, validation, and bile acid transport studies.
    Blitzer BL; Donovan CB
    J Biol Chem; 1984 Jul; 259(14):9295-301. PubMed ID: 6746649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taurocholate transport and Na+-K+-ATPase activity in fetal and neonatal rat liver plasma membrane vesicles.
    Suchy FJ; Bucuvalas JC; Goodrich AL; Moyer MS; Blitzer BL
    Am J Physiol; 1986 Nov; 251(5 Pt 1):G665-73. PubMed ID: 3022600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic and energetic aspects of the inhibition of taurocholate uptake by Na+-dependent amino acids: studies in rat liver plasma membrane vesicles.
    Blitzer BL; Bueler RL
    Am J Physiol; 1985 Jul; 249(1 Pt 1):G120-4. PubMed ID: 4014461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of ATP-depleted cells in the analysis of taurocholate uptake by isolated rat hepatocytes.
    Yamazaki M; Sugiyama Y; Suzuki H; Iga T; Hanano M
    J Hepatol; 1992 Jan; 14(1):54-63. PubMed ID: 1737916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taurine transport across hepatocyte plasma membranes: analysis in isolated rat liver sinusoidal plasma membrane vesicles.
    Inoue M; Arias IM
    J Biochem; 1988 Jul; 104(1):155-8. PubMed ID: 3220826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP-dependent bile-salt transport in canalicular rat liver plasma-membrane vesicles.
    Stieger B; O'Neill B; Meier PJ
    Biochem J; 1992 May; 284 ( Pt 1)(Pt 1):67-74. PubMed ID: 1599411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.