BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 6707198)

  • 1. Taurocholate transport by rat liver canalicular membrane vesicles. Evidence for the presence of an Na+-independent transport system.
    Inoue M; Kinne R; Tran T; Arias IM
    J Clin Invest; 1984 Mar; 73(3):659-63. PubMed ID: 6707198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles.
    Duffy MC; Blitzer BL; Boyer JL
    J Clin Invest; 1983 Oct; 72(4):1470-81. PubMed ID: 6630516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium ion-coupled uptake of taurocholate by rat-liver plasma membrane vesicles.
    Ruifrok PG; Meijer DK
    Liver; 1982 Mar; 2(1):28-34. PubMed ID: 7176836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taurocholate transport by rat intestinal basolateral membrane vesicles. Evidence for the presence of an anion exchange transport system.
    Weinberg SL; Burckhardt G; Wilson FA
    J Clin Invest; 1986 Jul; 78(1):44-50. PubMed ID: 3722383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bile acid transport by basal membrane vesicles of human term placental trophoblast.
    Marin JJ; Serrano MA; el-Mir MY; Eleno N; Boyd CA
    Gastroenterology; 1990 Nov; 99(5):1431-8. PubMed ID: 2210249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Taurocholate--sodium co-transport by brush-border membrane vesicles isolated from rat ileum.
    Lücke H; Stange G; Kinne R; Murer H
    Biochem J; 1978 Sep; 174(3):951-8. PubMed ID: 581553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. Evidence for an electrogenic canalicular organic anion carrier.
    Meier PJ; St Meier-Abt A; Barrett C; Boyer JL
    J Biol Chem; 1984 Aug; 259(16):10614-22. PubMed ID: 6469975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multispecificity of Na+-dependent taurocholate uptake in basolateral (sinusoidal) rat liver plasma membrane vesicles.
    Zimmerli B; Valantinas J; Meier PJ
    J Pharmacol Exp Ther; 1989 Jul; 250(1):301-8. PubMed ID: 2746502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-dependent taurocholate transport by rat liver canalicular membrane vesicles.
    Adachi Y; Kobayashi H; Kurumi Y; Shouji M; Kitano M; Yamamoto T
    Hepatology; 1991 Oct; 14(4 Pt 1):655-9. PubMed ID: 1916666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two distinct mechanisms for taurocholate uptake in subcellular fractions from rat liver.
    Simion FA; Fleischer B; Fleischer S
    J Biol Chem; 1984 Sep; 259(17):10814-22. PubMed ID: 6469982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP-dependent transport of the linear renin-inhibiting peptide EMD 51921 by canalicular plasma membrane vesicles of rat liver: evidence of drug-stimulatable ATP-hydrolysis.
    Ziegler K; Kolac C; Ising W
    Biochim Biophys Acta; 1994 Dec; 1196(2):209-17. PubMed ID: 7841185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taurocholate transport by basolateral plasma membrane vesicles isolated from developing rat liver.
    Suchy FJ; Courchene SM; Blitzer BL
    Am J Physiol; 1985 Jun; 248(6 Pt 1):G648-54. PubMed ID: 2408482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taurocholate transport by basolateral plasma membrane vesicles isolated from human liver.
    Novak DA; Ryckman FC; Suchy FJ
    Hepatology; 1989 Oct; 10(4):447-53. PubMed ID: 2777205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A study on the mechanism of bile acid transport in the human placenta (the passive transport system of taurocholate across microvillous membrane)].
    Iioka H; Moriyama I; Hino K; Ichijo M
    Nihon Sanka Fujinka Gakkai Zasshi; 1986 Jun; 38(6):837-44. PubMed ID: 3734517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new method for the rapid isolation of basolateral plasma membrane vesicles from rat liver. Characterization, validation, and bile acid transport studies.
    Blitzer BL; Donovan CB
    J Biol Chem; 1984 Jul; 259(14):9295-301. PubMed ID: 6746649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taurocholate transport and Na+-K+-ATPase activity in fetal and neonatal rat liver plasma membrane vesicles.
    Suchy FJ; Bucuvalas JC; Goodrich AL; Moyer MS; Blitzer BL
    Am J Physiol; 1986 Nov; 251(5 Pt 1):G665-73. PubMed ID: 3022600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic and energetic aspects of the inhibition of taurocholate uptake by Na+-dependent amino acids: studies in rat liver plasma membrane vesicles.
    Blitzer BL; Bueler RL
    Am J Physiol; 1985 Jul; 249(1 Pt 1):G120-4. PubMed ID: 4014461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of ATP-depleted cells in the analysis of taurocholate uptake by isolated rat hepatocytes.
    Yamazaki M; Sugiyama Y; Suzuki H; Iga T; Hanano M
    J Hepatol; 1992 Jan; 14(1):54-63. PubMed ID: 1737916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taurine transport across hepatocyte plasma membranes: analysis in isolated rat liver sinusoidal plasma membrane vesicles.
    Inoue M; Arias IM
    J Biochem; 1988 Jul; 104(1):155-8. PubMed ID: 3220826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP-dependent bile-salt transport in canalicular rat liver plasma-membrane vesicles.
    Stieger B; O'Neill B; Meier PJ
    Biochem J; 1992 May; 284 ( Pt 1)(Pt 1):67-74. PubMed ID: 1599411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.