These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 67073)

  • 1. N-band polymorphism of human acrocentric chromosomes and its relevance to satellite association.
    Hayata I; Oshimura M; Sandberg AA
    Hum Genet; 1977 Apr; 36(1):55-61. PubMed ID: 67073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Satellite-association frequency and rDNA content of a double-satellited chromosome.
    Henderson AS; Atwood KC
    Hum Genet; 1976 Jan; 31(1):113-5. PubMed ID: 942940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RHG-band polymorphism of the short arms of human acrocentric chromosomes and relationship of variants to satellite associations.
    Balícek P; Zizka J; Skalská H
    Hum Genet; 1982; 62(3):237-9. PubMed ID: 6963243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization of NORs in relation to the precise chromosomal localization of ribosomal RNA genes.
    Cheung SW; Sun L; Featherstone T
    Cytogenet Cell Genet; 1989; 50(2-3):93-7. PubMed ID: 2476278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleolus organizer and satellite association in a variant D-group chromosome.
    de Capoa A; Ferraro M; Archidiacono N; Pelliccia F; Rocchi M; Rocchi A
    Hum Genet; 1976 Sep; 34(1):13-6. PubMed ID: 965001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in the number of genes for rRNA among human acrocentric chromosomes: correlation with frequency of satellite association.
    Warburton D; Atwood KC; Henderson AS
    Cytogenet Cell Genet; 1976; 17(4):221-30. PubMed ID: 1001029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Location of nucleolar organizers in animal and plant chromosomes by means of an improved N-banding technique.
    Funaki K; Matsui S; Sasaki M
    Chromosoma; 1975; 49(4):357-70. PubMed ID: 48450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverted and satellited Y chromosome in the orangutan (Pongo pygmaeus).
    Schempp W; Toder R; Rietschel W; Grützner F; Mayerová A; Gauckler A
    Chromosome Res; 1993 May; 1(1):69-75. PubMed ID: 8143091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The association of satellites of human acrocentric chromosomes and Ag staining of nucleolar organizers].
    Balícek P; Zizka J; Skalská H
    Cas Lek Cesk; 1984 Dec; 123(52):1599-603. PubMed ID: 6083830
    [No Abstract]   [Full Text] [Related]  

  • 10. The mobile nature of acrocentric elements illustrated by three unusual chromosome variants.
    Reddy KS; Sulcova V
    Hum Genet; 1998 Jun; 102(6):653-62. PubMed ID: 9703427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Drosophila heterochromatin. II. C- and N-banding.
    Pimpinelli S; Santini G; Gatti M
    Chromosoma; 1976 Sep; 57(4):377-86. PubMed ID: 63359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organization of rDNA spacer fragment variants among human acrocentric chromosomes in somatic cell hybrids.
    Naylor SL; Sakaguchi AY; Schmickel RD; Woodworth-Gutai M; Shows TB
    J Mol Appl Genet; 1983; 2(2):137-46. PubMed ID: 6875425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Sequential staining of the polymorphic regions of human acrocentric chromosomes using different cytochemical methods].
    Beniush VA; Egolina NA
    Tsitologiia; 1983 Aug; 25(8):910-7. PubMed ID: 6636304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human acrocentric ring chromosomes and satellite association.
    Cantu JM; Salamanca F; Sanchez J; Peña T; Pacheco C; Armendares S
    Ann Genet; 1975 Sep; 18(3):193-6. PubMed ID: 1080983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitotic recombination among acrocentric chromosomes' short arms.
    Guissani U; Facchinetti B; Cassina G; Zuffardi O
    Ann Hum Genet; 1996 Mar; 60(2):91-7. PubMed ID: 8839124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical model for satellite associations of human acrocentric chromosomes.
    Lezhava T; Tsigroshvili Z; Dvalishvili N; Jokhadze T
    Georgian Med News; 2008 Nov; (164):90-9. PubMed ID: 19075353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of acrocentric associations in male and female cells. Relationship to the active nucleolar organizers.
    Galperin-Lemaître H; Hens L; Sele B
    Hum Genet; 1980; 54(3):349-53. PubMed ID: 6156887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in human acrocentric chromosomes with acridine orange reverse banding.
    Verma RS; Lubs HA
    Humangenetik; 1975 Sep; 30(3):225-35. PubMed ID: 52587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential Q- and Acridine orange-marker technique.
    Niikawa N; Kajii T
    Humangenetik; 1975 Oct; 30(1):83-90. PubMed ID: 52586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Q- and G-banding on the Feulgen-stainability of human metaphase chromosomes.
    Bosman FT; Van Der Ploeg M; Geraedts JP
    Histochem J; 1977 Jan; 9(1):31-42. PubMed ID: 63454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.