BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6707526)

  • 1. Utilization of different fatty acyl-CoA thioesters by serine palmitoyltransferase from rat brain.
    Merrill AH; Williams RD
    J Lipid Res; 1984 Feb; 25(2):185-8. PubMed ID: 6707526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymology of long-chain base synthesis by liver: characterization of serine palmitoyltransferase in rat liver microsomes.
    Williams RD; Wang E; Merrill AH
    Arch Biochem Biophys; 1984 Jan; 228(1):282-91. PubMed ID: 6421234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activities of serine palmitoyltransferase (3-ketosphinganine synthase) in microsomes from different rat tissues.
    Merrill AH; Nixon DW; Williams RD
    J Lipid Res; 1985 May; 26(5):617-22. PubMed ID: 4020300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of long-chain (sphingoid) base biosynthesis in intact LM cells: effects of varying the extracellular concentrations of serine and fatty acid precursors of this pathway.
    Merrill AH; Wang E; Mullins RE
    Biochemistry; 1988 Jan; 27(1):340-5. PubMed ID: 3126810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sphingolipid biosynthesis in cultured neurons. Down-regulation of serine palmitoyltransferase by sphingoid bases.
    Mandon EC; van Echten G; Birk R; Schmidt RR; Sandhoff K
    Eur J Biochem; 1991 Jun; 198(3):667-74. PubMed ID: 1646717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymology of long-chain base synthesis by aorta: induction of serine palmitoyltransferase activity in rabbit aorta during atherogenesis.
    Williams RD; Sgoutas DS; Zaatari GS
    J Lipid Res; 1986 Jul; 27(7):763-70. PubMed ID: 3093620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative suitability of 1-palmitoyl and 1-stearoyl homologues of 1-acyl-sn-glycerylphosphorylcholine and different acyl donors for phosphatidylcholine synthesis via acyl-CoA:1-acyl-sn-glycero-3-phosphorylcholine acyltransferase in rat lung microsomes.
    Holub BJ; Piekarski J; Possmayer F
    Can J Biochem; 1980 May; 58(5):434-9. PubMed ID: 7407680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carnitine acyltransferase activities in rat liver and heart measured with palmitoyl-CoA and octanoyl-CoA. Latency, effects of K+, bivalent metal ions and malonyl-CoA.
    Saggerson ED
    Biochem J; 1982 Feb; 202(2):397-405. PubMed ID: 7092822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The activity of partial reactions in the chain elongation of palmitoyl-CoA and stearoyl-CoA by mouse brain microsomes.
    Bernert JT; Bourre JM; Baumann NA; Sprecher H
    J Neurochem; 1979 Jan; 32(1):85-90. PubMed ID: 759588
    [No Abstract]   [Full Text] [Related]  

  • 10. Myristate-derived d16:0 sphingolipids constitute a cardiac sphingolipid pool with distinct synthetic routes and functional properties.
    Russo SB; Tidhar R; Futerman AH; Cowart LA
    J Biol Chem; 2013 May; 288(19):13397-409. PubMed ID: 23530041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification of the serine palmitoyltransferase complex responsible for sphingoid base synthesis by using affinity peptide chromatography techniques.
    Hanada K; Hara T; Nishijima M
    J Biol Chem; 2000 Mar; 275(12):8409-15. PubMed ID: 10722674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effect of very-long-chain monounsaturated fatty-acyl-CoAs on the elongation of long-chain fatty acid in swine cerebral microsomes.
    Saitoh T; Yoshida S; Takeshita M
    Biochim Biophys Acta; 1988 Jun; 960(3):410-6. PubMed ID: 3382682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limited palmitoyl-CoA penetration into microsomal vesicles as evidenced by a highly latent ethanol acyltransferase activity.
    Polokoff MA; Bell RM
    J Biol Chem; 1978 Oct; 253(20):7173-8. PubMed ID: 701242
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of fatty-acyl-CoAs on the elongation of saturated fatty acid in porcine aorta microsomes.
    Murakami K; Yoshida S; Takeshita M
    Biochem Int; 1990; 21(2):297-304. PubMed ID: 2403369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of serine palmitoyltransferase in Morris hepatoma 7777 and rat liver.
    Williams RD; Nixon DW; Merrill AH
    Cancer Res; 1984 May; 44(5):1918-23. PubMed ID: 6713393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palmitoyl-CoA elongation in brain microsomes: dependence on cytochrome b5 and NADH-cytochrome b5 reductase.
    Takeshita M; Tamura M; Yoshida S; Yubisui T
    J Neurochem; 1985 Nov; 45(5):1390-5. PubMed ID: 2995584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspects of long-chain acyl-COA metabolism.
    Tol VA
    Mol Cell Biochem; 1975 Apr; 7(1):19-31. PubMed ID: 1134497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acyl-CoA chain length affects the specificity of various carnitine palmitoyltransferases with respect to carnitine analogues. Possible application in the discrimination of different carnitine palmitoyltransferase activities.
    Murthy MS; Ramsay RR; Pande SV
    Biochem J; 1990 Apr; 267(1):273-6. PubMed ID: 2327985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of serine palmitoyltransferase activity in Chinese hamster ovary cells.
    Merrill AH
    Biochim Biophys Acta; 1983 Dec; 754(3):284-91. PubMed ID: 6652105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinol esterification by rat liver microsomes. Evidence for a fatty acyl coenzyme A: retinol acyltransferase.
    Ross AC
    J Biol Chem; 1982 Mar; 257(5):2453-9. PubMed ID: 7061433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.