These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 6707936)

  • 1. Addition of the effects of norepinephrine and acetazolamide to decrease formation of cerebrospinal fluid.
    Vogh BP; Godman DR
    J Pharmacol Exp Ther; 1984 Apr; 229(1):207-9. PubMed ID: 6707936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of acetazolamide and furosemide on cerebrospinal fluid production and choroid plexus carbonic anhydrase activity.
    McCarthy KD; Reed DJ
    J Pharmacol Exp Ther; 1974 Apr; 189(1):194-201. PubMed ID: 4207244
    [No Abstract]   [Full Text] [Related]  

  • 3. The relation of choroid plexus carbonic anhydrase activity to cerebrospinal fluid formation: study of three inhibitors in cat with extrapolation to man.
    Vogh BP
    J Pharmacol Exp Ther; 1980 May; 213(2):321-31. PubMed ID: 7365692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vascular effects of acetazolamide on the choroid plexus.
    Faraci FM; Mayhan WG; Heistad DD
    J Pharmacol Exp Ther; 1990 Jul; 254(1):23-7. PubMed ID: 2114478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of cerebrospinal fluid (CSF) production by a Na+/K+ pump inhibitor extracted from human cerebrospinal fluid.
    Lorenzo AV; Taratuska A; Halperin JA
    Z Kinderchir; 1989 Dec; 44 Suppl 1():24-6. PubMed ID: 2560297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aluminum and gallium arrest formation of cerebrospinal fluid by the mechanism of OH- depletion.
    Vogh BP; Godman DR; Maren TH
    J Pharmacol Exp Ther; 1985 Jun; 233(3):715-21. PubMed ID: 2989493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Serotonergic effect on cerebrospinal fluid production].
    Nakamura S; Maeda K; Sasaki J; Tsubokawa T
    No To Shinkei; 1985 Mar; 37(3):237-42. PubMed ID: 4015899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for the presence of two types of monoamine oxidase in rabbit choroid plexus and their role in breakdown of amines influencing cerebrospinal fluid formation.
    Lindvall M; Owman C
    J Neurochem; 1980 Mar; 34(3):518-22. PubMed ID: 6766496
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of 5-hydroxytryptamine on the rate of cerebrospinal fluid production in rabbit.
    Lindvall-Axelsson M; Mathew C; Nilsson C; Owman C
    Exp Neurol; 1988 Feb; 99(2):362-8. PubMed ID: 3276547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the surface features of choroid plexus of the rat following the administration of acetazolamide and other drugs which affect CSF secretion.
    Collins P; Morriss GM
    J Anat; 1975 Dec; 120(Pt 3):571-9. PubMed ID: 1240096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of AlCl3 and other acids on cerebrospinal fluid production: a correction.
    Vogh BP; Godman DR; Maren TH
    J Pharmacol Exp Ther; 1987 Oct; 243(1):35-9. PubMed ID: 3668863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of carbonic anhydrase inhibitors and acidosis in choroid plexus epithelial cell sodium and potassium.
    Smith QR; Johanson CE
    J Pharmacol Exp Ther; 1980 Dec; 215(3):673-80. PubMed ID: 7441525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sympathomimetic drugs and corresponding receptor antagonists on the rate of cerebrospinal fluid production.
    Lindvall M; Edvinsson L; Owman C
    Exp Neurol; 1979 Apr; 64(1):132-45. PubMed ID: 34525
    [No Abstract]   [Full Text] [Related]  

  • 14. Timolol plus acetazolamide: effect on formation of cerebrospinal fluid in cats and rats.
    Vogh BP; Godman DR
    Can J Physiol Pharmacol; 1985 Apr; 63(4):340-3. PubMed ID: 4005705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transnasal delivery of 5-fluorouracil to the rat brain is enhanced by acetazolamide (the inhibitor of the secretion of cerebrospinal fluid).
    Shingaki T; Hidalgo IJ; Furubayashi T; Katsumi H; Sakane T; Yamamoto A; Yamashita S
    Int J Pharm; 2009 Jul; 377(1-2):85-91. PubMed ID: 19446619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The formation of cerebrospinal fluid in two amphibians, Rana catesbeiana and Rana pipiens.
    Taylor CM; Jones HC
    Brain Res; 1985 May; 334(1):27-31. PubMed ID: 3873269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gastric mucosal protection by acetazolamide in rats. Roles of prostaglandins, sulfhydryls, and gastric motility.
    Gutiérrez-Cabano CA
    Acta Gastroenterol Latinoam; 1994; 24(2):89-97. PubMed ID: 7817699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential error in ventriculocisternal perfusion method for determination of cerebrospinal fluid formation rate in cats.
    Maraković J; Oresković D; Jurjević I; Rados M; Chudy D; Klarica M
    Coll Antropol; 2011 Jan; 35 Suppl 1():73-7. PubMed ID: 21648314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of acetazolamide on pentobarbital sleep-time and cerebrospinal fluid flow of rats.
    Reed DJ
    Arch Int Pharmacodyn Ther; 1968 Jan; 171(1):206-15. PubMed ID: 5646017
    [No Abstract]   [Full Text] [Related]  

  • 20. Renal and cerebrospinal fluid formation pharmacology of a high molecular weight carbonic anhydrase inhibitor.
    Maren TH; Conroy CW; Wynns GC; Godman DR
    J Pharmacol Exp Ther; 1997 Jan; 280(1):98-104. PubMed ID: 8996186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.