BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 6709230)

  • 1. Nervus terminalis in dogfish (Squalus acanthias, Elasmobranchii) carries tonic efferent impulses.
    Bullock TH; Northcutt RG
    Neurosci Lett; 1984 Feb; 44(2):155-60. PubMed ID: 6709230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nervus terminalis of the shark: the effect of efferent impulses on ganglion cell activity.
    White J; Meredith M
    Brain Res; 1987 Jan; 400(1):159-64. PubMed ID: 3815064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between the olfactory system and the terminal nerve. Electrophysiological evidence.
    Meredith M; White J
    Ann N Y Acad Sci; 1987; 519():349-68. PubMed ID: 3448968
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies on the terminal nerve and its central connections in goldfish.
    Sloan HE; Demski LS
    Ann N Y Acad Sci; 1987; 519():421-32. PubMed ID: 3329474
    [No Abstract]   [Full Text] [Related]  

  • 5. [Reactions of dogfish shark (Squalus acanthias L.) forebrain neurons evoked by visual stimulation].
    Nikonorov SI; Luk'ianov AS
    Fiziol Zh SSSR Im I M Sechenova; 1980 Jan; 66(1):40-7. PubMed ID: 7364111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological studies of centrifugal and centripetal connections of the anterior olfactory nucleus.
    Daval G; Leveteau J
    Brain Res; 1974 Oct; 78(3):395-410. PubMed ID: 4424941
    [No Abstract]   [Full Text] [Related]  

  • 7. Medullary and mesencephalic pathways and connections of lateral line neurons of the spiny dogfish Squalus acanthias.
    Boord RL; Northcutt RG
    Brain Behav Evol; 1988; 32(2):76-88. PubMed ID: 3179696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary olfactory projections and the nervus terminalis in the African lungfish: implications for the phylogeny of cranial nerves.
    von Bartheld CS; Claas B; Münz H; Meyer DL
    Am J Anat; 1988 Aug; 182(4):325-34. PubMed ID: 2847523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topographical relation between olfactory bulb and olfactory tracts in the carp.
    Satou M; Ichikawa M; Ueda K; Takagi SF
    Brain Res; 1979 Sep; 173(1):142-6. PubMed ID: 487076
    [No Abstract]   [Full Text] [Related]  

  • 10. Hypothalmic influences on the electrical activity of the olfactory pathway.
    Aguilar-Barturoni HU; Guevara-aguilar R; Aréchiga H; Alcocer-Cuarón C
    Brain Res Bull; 1976; 1(3):263-72. PubMed ID: 974807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous efferent activity in branches of the vagus nerve controlling heart rate and ventilation in the dogfish.
    Barrett DJ; Taylor EW
    J Exp Biol; 1985 Jul; 117():433-48. PubMed ID: 4067504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronized rhythmic discharges of the secondary olfactory neurons in carp.
    Satou M; Ueda K
    Brain Res; 1978 Dec; 158(2):313-29. PubMed ID: 709369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central organization of the efferent supply to the labyrinthine and lateral line receptors of the dogfish.
    Meredith GE; Roberts BL
    Neuroscience; 1986; 17(1):225-33. PubMed ID: 3960311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nervus terminalis innervation of the goldfish retina and behavioral visual sensitivity.
    Davis RE; Kyle A; Klinger PD
    Neurosci Lett; 1988 Aug; 91(2):126-30. PubMed ID: 3185953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ganglion cells of the terminal nerve: morphology and electrophysiology.
    Fujita I; Satou M; Ueda K
    Brain Res; 1985 May; 335(1):148-52. PubMed ID: 4005539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Early positive component of the evoked potential of the midbrain tectum of the dogfish shark during electric stimulation of the optic nerve].
    Luk'ianov AS; Garina NS
    Neirofiziologiia; 1984; 16(1):61-7. PubMed ID: 6717678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The olfactory gonadotropin-releasing hormone immunoreactive system in mouse.
    Jennes L
    Brain Res; 1986 Oct; 386(1-2):351-63. PubMed ID: 3535994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antidromic units in the prepyriform cortex driven by olfactory peduncular volleys.
    Willey TJ; Maeda G; Rafuse D
    Brain Res; 1975 Jul; 92(1):132-6. PubMed ID: 1174940
    [No Abstract]   [Full Text] [Related]  

  • 19. Aspartate and not glutamate is the likely transmitter of the rat lateral olfactory tract fibres.
    Collins GG; Probett GA
    Brain Res; 1981 Mar; 209(1):231-4. PubMed ID: 6260304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective retrograde transport of tritiated D-aspartate from the olfactory bulb to the anterior olfactory nucleus, pyriform cortex and nucleus of the lateral olfactory tract in the rat.
    Watanabe K; Kawana E
    Brain Res; 1984 Mar; 296(1):148-51. PubMed ID: 6201233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.