These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 6709633)

  • 21. Cyclic changes in ionic composition of digesta in the equine intestinal tract.
    Argenzio RA; Stevens CE
    Am J Physiol; 1975 Apr; 228(4):1224-30. PubMed ID: 1130521
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption.
    Melo LQ; Costa SF; Lopes F; Guerreiro MC; Armentano LE; Pereira MN
    J Anim Sci; 2013 Apr; 91(4):1775-83. PubMed ID: 23345561
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Between-cow variation in digestion and rumen fermentation variables associated with methane production.
    Cabezas-Garcia EH; Krizsan SJ; Shingfield KJ; Huhtanen P
    J Dairy Sci; 2017 Jun; 100(6):4409-4424. PubMed ID: 28390728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Absorption of volatile fatty acids from the rumen of lactating dairy cows as influenced by volatile fatty acid concentration, pH and rumen liquid volume.
    Dijkstra J; Boer H; Van Bruchem J; Bruining M; Tamminga S
    Br J Nutr; 1993 Mar; 69(2):385-96. PubMed ID: 8489996
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sites of organic acid production and patterns of digesta movement in the gastrointestinal tract of the rock hyrax.
    Clemens ET
    J Nutr; 1977 Nov; 107(11):1954-61. PubMed ID: 20487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fermentation of polysaccharides and absorption of short chain fatty acids in the mammalian hindgut.
    Rechkemmer G; Rönnau K; von Engelhardt W
    Comp Biochem Physiol A Comp Physiol; 1988; 90(4):563-8. PubMed ID: 2902962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ileal and faecal protein digestibility measurement in humans and other non-ruminants - a comparative species view.
    Hendriks WH; van Baal J; Bosch G
    Br J Nutr; 2012 Aug; 108 Suppl 2():S247-57. PubMed ID: 23107535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Absorption of volatile fatty acid, Na, and H2O by the colon of the dog.
    Herschel DA; Argenzio RA; Southworth M; Stevens CE
    Am J Vet Res; 1981 Jul; 42(7):1118-24. PubMed ID: 7271026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of models to predict the stoichiometry of volatile fatty acid profiles in rumen fluid of lactating Holstein cows.
    Morvay Y; Bannink A; France J; Kebreab E; Dijkstra J
    J Dairy Sci; 2011 Jun; 94(6):3063-80. PubMed ID: 21605776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pectin in pig nutrition, a comparative review.
    Drochner W; Kerler A; Zacharias B
    J Anim Physiol Anim Nutr (Berl); 2004 Dec; 88(11-12):367-80. PubMed ID: 15584946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals.
    Bugaut M
    Comp Biochem Physiol B; 1987; 86(3):439-72. PubMed ID: 3297476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of the magnitude of the decrease of rumen pH on rumen fermentation in a dual-flow continuous culture system.
    Cerrato-Sánchez M; Calsamiglia S; Ferret A
    J Anim Sci; 2008 Feb; 86(2):378-83. PubMed ID: 17998434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Postweaning age effects on rumen fermentation end-products and digesta kinetics in calves weaned at 5 weeks of age.
    Vazquez-Anon M; Heinrichs AJ; Aldrich JM; Varga GA
    J Dairy Sci; 1993 Sep; 76(9):2742-8. PubMed ID: 8227677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glucose and lactate catabolism by bacteria of the pig large intestine and sheep rumen as assessed by 13C nuclear magnetic resonance.
    Stevani J; Grivet JP; Hannequart G; Durand M
    J Appl Bacteriol; 1991 Dec; 71(6):524-30. PubMed ID: 1778845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The particulate passage rate, nutrient composition and fermentation characteristics across gastrointestinal tracts in lactating dairy cows fed three different forage source diets.
    Wang B; Gu FF; Huang XB; Liu JX
    J Anim Physiol Anim Nutr (Berl); 2018 Aug; 102(4):861-868. PubMed ID: 29671906
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inclusion of psyllium in milk replacer for neonatal calves. 2. Effects on volatile fatty acid concentrations, microbial populations, and gastrointestinal tract size.
    Cannon SJ; Fahey GC; Pope LL; Bauer LL; Wallace RL; Miller BL; Drackley JK
    J Dairy Sci; 2010 Oct; 93(10):4744-58. PubMed ID: 20855009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbohydrate fermentation in the large intestine of lambs.
    DeGregorio RM; Tucker RE; Mitchell GE; Gill WW
    J Anim Sci; 1982 Apr; 54(4):855-62. PubMed ID: 6282799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Starch and fiber properties affect their kinetics of digestion and thereby digestive physiology in pigs.
    Zijlstra RT; Jha R; Woodward AD; Fouhse J; van Kempen TA
    J Anim Sci; 2012 Dec; 90 Suppl 4():49-58. PubMed ID: 23365281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characteristics of dairy cows with a greater or lower risk of subacute ruminal acidosis: Volatile fatty acid absorption, rumen digestion, and expression of genes in rumen epithelial cells.
    Gao X; Oba M
    J Dairy Sci; 2016 Nov; 99(11):8733-8745. PubMed ID: 27638257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of forage conservation method on ruminal lipid metabolism and microbial ecology in lactating cows fed diets containing a 60:40 forage-to-concentrate ratio.
    Halmemies-Beauchet-Filleau A; Kairenius P; Ahvenjärvi S; Crosley LK; Muetzel S; Huhtanen P; Vanhatalo A; Toivonen V; Wallace RJ; Shingfield KJ
    J Dairy Sci; 2013 Apr; 96(4):2428-2447. PubMed ID: 23375967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.