BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6709651)

  • 21. The effect of 3-methylindole on phospholipid synthesis in goat lung tissue slices.
    Kirkland JB; Bray TM
    Proc Soc Exp Biol Med; 1984 Jan; 175(1):30-4. PubMed ID: 6694967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase II in vitro metabolism of 3-methylindole metabolites in porcine liver.
    Diaz GJ; Squires EJ
    Xenobiotica; 2003 May; 33(5):485-98. PubMed ID: 12746105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of pulmonary CYP4B2, specific catalyst of methyl oxidation of 3-methylindole.
    Carr BA; Ramakanth S; Dannan GA; Yost GS
    Mol Pharmacol; 2003 May; 63(5):1137-47. PubMed ID: 12695542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production and characterization of specific antibodies: utilization to predict organ- and species-selective pneumotoxicity of 3-methylindole.
    Kaster JK; Yost GS
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):324-37. PubMed ID: 9144449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure of the glutathione adduct of activated 3-methylindole indicates that an imine methide is the electrophilic intermediate.
    Nocerini MR; Yost GS; Carlson JR; Liberato DJ; Breeze RG
    Drug Metab Dispos; 1985; 13(6):690-4. PubMed ID: 2867872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Respective roles of CYP2A5 and CYP2F2 in the bioactivation of 3-methylindole in mouse olfactory mucosa and lung: studies using Cyp2a5-null and Cyp2f2-null mouse models.
    Zhou X; D'Agostino J; Li L; Moore CD; Yost GS; Ding X
    Drug Metab Dispos; 2012 Apr; 40(4):642-7. PubMed ID: 22228748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The metabolic basis of 3-methylindole-induced pneumotoxicity.
    Bray TM; Kirkland JB
    Pharmacol Ther; 1990; 46(1):105-18. PubMed ID: 2181487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phase I metabolism of 3-methylindole, an environmental pollutant, by hepatic microsomes from carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss).
    Zlabek V; Burkina V; Borrisser-PairĂ³ F; Sakalli S; Zamaratskaia G
    Chemosphere; 2016 May; 150():304-310. PubMed ID: 26915592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence supporting the formation of 2,3-epoxy-3-methylindoline: a reactive intermediate of the pneumotoxin 3-methylindole.
    Skordos KW; Skiles GL; Laycock JD; Lanza DL; Yost GS
    Chem Res Toxicol; 1998 Jul; 11(7):741-9. PubMed ID: 9671536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of goat and mouse urinary metabolites of the pneumotoxin, 3-methylindole.
    Smith DJ; Skiles GL; Appleton ML; Carlson JR; Yost GS
    Xenobiotica; 1993 Sep; 23(9):1025-44. PubMed ID: 8291262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cloning and expression of CYP2F3, a cytochrome P450 that bioactivates the selective pneumotoxins 3-methylindole and naphthalene.
    Wang H; Lanza DL; Yost GS
    Arch Biochem Biophys; 1998 Jan; 349(2):329-40. PubMed ID: 9448722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and identification of 3-hydroxy-3-methyloxindole, the major murine metabolite of 3-methylindole.
    Skiles GL; Adams JD; Yost GS
    Chem Res Toxicol; 1989; 2(4):254-9. PubMed ID: 2519781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of mixed function oxidase (MFO) in the metabolism of the spin trapping agent alpha-phenyl-N-tert-butyl-nitrone (PBN) in rats.
    Chen GM; Bray TM; Janzen EG; McCay PB
    Free Radic Res Commun; 1991; 14(1):9-16. PubMed ID: 2022348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of 3-methylindole bioactivation by the cytochrome P-450 suicide substrates 1-aminobenzotriazole and alpha-methylbenzylaminobenzotriazole.
    Huijzer JC; Adams JD; Jaw JY; Yost GS
    Drug Metab Dispos; 1989; 17(1):37-42. PubMed ID: 2566467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of the arachidonic acid and NADPH-dependent microsomal metabolism of naphthalene and 2-methylnaphthalene and the effect of indomethacin on the bronchiolar necrosis.
    Buckpitt AR; Bahnson LS; Franklin RB
    Biochem Pharmacol; 1986 Feb; 35(4):645-50. PubMed ID: 3081009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The roles of different porcine cytochrome P450 enzymes and cytochrome b5A in skatole metabolism.
    Wiercinska P; Lou Y; Squires EJ
    Animal; 2012 May; 6(5):834-45. PubMed ID: 22558931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of hyperthyroidism on the in vitro metabolism and covalent binding of 1,1-dichloroethylene in rat liver microsomes.
    Gunasena GH; Kanz MF
    J Toxicol Environ Health; 1997 Oct; 52(2):169-88. PubMed ID: 9310148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolism of 3-methylindole by porcine liver microsomes: responsible cytochrome P450 enzymes.
    Diaz GJ; Squires EJ
    Toxicol Sci; 2000 Jun; 55(2):284-92. PubMed ID: 10828259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanistic studies on the cytochrome P450-catalyzed dehydrogenation of 3-methylindole.
    Skiles GL; Yost GS
    Chem Res Toxicol; 1996; 9(1):291-7. PubMed ID: 8924606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of beta-glucuronidase-resistant diastereomeric glucuronides of 3-hydroxy-3-methyloxindole formed during 3-methylindole metabolism in goats.
    Smith DJ; Appleton ML; Carlson JR; Yost GS
    Drug Metab Dispos; 1996 Jan; 24(1):119-25. PubMed ID: 8825199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.