BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6709651)

  • 41. Evidence for hepatic formation, export and covalent binding of reactive naphthalene metabolites in extrahepatic tissues in vivo.
    Buckpitt AR; Warren DL
    J Pharmacol Exp Ther; 1983 Apr; 225(1):8-16. PubMed ID: 6834280
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of 3-methylindole on the uptake and incorporation of 14C-choline into phospholipids in lung tissue slices.
    Kirkland JB; Bray TM
    Lipids; 1984 Oct; 19(10):709-13. PubMed ID: 6503617
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of 3-methylindole on superoxide and hydrogen peroxide production and NADPH oxidation by goat lung microsomes.
    Laegreid WW; Breeze RG
    Res Commun Chem Pathol Pharmacol; 1985 Mar; 47(3):387-97. PubMed ID: 2986255
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deuterium-Labeling Studies Reveal the Mechanism of Cytochrome P450-Catalyzed Formation of 2-Aminoacetophenone from 3-Methylindole (Skatole) in Porcine Liver Microsomes.
    Gerlach C; Wüst M
    J Agric Food Chem; 2017 Dec; 65(49):10775-10780. PubMed ID: 29151343
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of a cysteinyl adduct of oxidized 3-methylindole from goat lung and human liver microsomal proteins.
    Ruangyuttikarn W; Skiles GL; Yost GS
    Chem Res Toxicol; 1992; 5(5):713-9. PubMed ID: 1446013
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolism of 3-methylindole by vaccinia-expressed P450 enzymes: correlation of 3-methyleneindolenine formation and protein-binding.
    Thornton-Manning J; Appleton ML; Gonzalez FJ; Yost GS
    J Pharmacol Exp Ther; 1996 Jan; 276(1):21-9. PubMed ID: 8558432
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Involvement of free radicals in the mechanism of 3-methylindole-induced pulmonary toxicity: an example of metabolic activation in chemically induced lung disease.
    Bray TM; Kubow S
    Environ Health Perspect; 1985 Dec; 64():61-7. PubMed ID: 3007101
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of phase I metabolites of 3-methylindole produced by pig liver microsomes.
    Diaz GJ; Skordos KW; Yost GS; Squires EJ
    Drug Metab Dispos; 1999 Oct; 27(10):1150-6. PubMed ID: 10497141
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioactivation of 3-methylindole by isolated rabbit lung cells.
    Nichols WK; Larson DN; Yost GS
    Toxicol Appl Pharmacol; 1990 Sep; 105(2):264-70. PubMed ID: 2219119
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Specific dehydrogenation of 3-methylindole and epoxidation of naphthalene by recombinant human CYP2F1 expressed in lymphoblastoid cells.
    Lanza DL; Code E; Crespi CL; Gonzalez FJ; Yost GS
    Drug Metab Dispos; 1999 Jul; 27(7):798-803. PubMed ID: 10383923
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of aldehyde oxidase in the hepatic in vitro metabolism of 3-methylindole in pigs.
    Diaz GJ; Squires EJ
    J Agric Food Chem; 2000 Mar; 48(3):833-7. PubMed ID: 10725159
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of rumen development and pre-exposure to chemicals on the activity of the mixed function oxidase system in goats.
    Burley FE; Bray TM
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1983; 75(1):137-40. PubMed ID: 6135551
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure of the adduct of glutathione and activated 3-methylindole.
    Yost GS; Nocerini MR; Carlson JR; Liberato DJ
    Adv Exp Med Biol; 1986; 197():373-80. PubMed ID: 3766268
    [No Abstract]   [Full Text] [Related]  

  • 54. Role of metabolism in the immediate effects and pneumotoxicity of 3-methylindole in goats.
    Breeze RG; Laegreid WW; Olcott BM
    Br J Pharmacol; 1984 Aug; 82(4):809-15. PubMed ID: 6478111
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of dietary and sulfur compounds in alleviating 3-methylindole-induced pulmonary toxicity in goats.
    Merrill JC; Bray TM
    J Nutr; 1983 Sep; 113(9):1725-31. PubMed ID: 6886820
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Organ-selective switching of 3-methylindole toxicity by glutathione depletion.
    Yost GS; Kuntz DJ; McGill LD
    Toxicol Appl Pharmacol; 1990 Mar; 103(1):40-51. PubMed ID: 2315931
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The covalent binding of 3-methylindole metabolites to bovine tissue.
    Hanafy MS; Bogan JA
    Life Sci; 1980 Sep; 27(13):1225-31. PubMed ID: 7421410
    [No Abstract]   [Full Text] [Related]  

  • 58. In vitro covalent binding of new brain tracer, para-125I-amphetamine, to rat liver and lung microsomes.
    Joulin Y; Delaforge M; Hoellinger H; Moretti JL; Sonnier M; Cesaro P
    Drug Chem Toxicol; 1990; 13(4):325-46. PubMed ID: 2279461
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of CYP2A and CYP2E1 in the metabolism of 3-methylindole in primary cultured porcine hepatocytes.
    Terner MA; Gilmore WJ; Lou Y; Squires EJ
    Drug Metab Dispos; 2006 May; 34(5):848-54. PubMed ID: 16501006
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanism-based inactivation of lung-selective cytochrome P450 CYP2F enzymes.
    Kartha JS; Yost GS
    Drug Metab Dispos; 2008 Jan; 36(1):155-62. PubMed ID: 17962375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.