These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6709651)

  • 81. Effects of phenobarbital treatment on 3-methylindole toxicosis in ponies.
    Turk MA; Thomas DE
    Am J Vet Res; 1986 Apr; 47(4):901-5. PubMed ID: 3963595
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Metabolic activation of the pneumotoxin, 3-methylindole, by vaccinia-expressed cytochrome P450s.
    Thornton-Manning JR; Ruangyuttikarn W; Gonzalez FJ; Yost GS
    Biochem Biophys Res Commun; 1991 Nov; 181(1):100-7. PubMed ID: 1958177
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The metabolism and disposition of 3-methylindole in goats.
    Hammond AC; Carlson JR; Willett JD
    Life Sci; 1979 Oct; 25(15):1301-6. PubMed ID: 513961
    [No Abstract]   [Full Text] [Related]  

  • 84. Gender-related differences in the formation of skatole metabolites by specific CYP450 in porcine hepatic S9 fractions.
    Borrisser-PairĂ³ F; Rasmussen MK; Ekstrand B; Zamaratskaia G
    Animal; 2015 Apr; 9(4):635-42. PubMed ID: 25465797
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Phenytoin metabolic activation: role of cytochrome P-450, glutathione, age, and sex in rats and mice.
    Roy D; Snodgrass WR
    Res Commun Chem Pathol Pharmacol; 1988 Feb; 59(2):173-90. PubMed ID: 3358010
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Effect of 3-methylindole on the plasma and lung concentrations of prostaglandins and thromboxane B2 in goats.
    Acton KS; Bray TM; Boermans HJ
    Comp Biochem Physiol A Comp Physiol; 1989; 94(4):677-81. PubMed ID: 2575955
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Covalent binding in vitro of polychlorinated biphenyls to microsomal macromolecules. Involvement of metabolic activation by a cytochrome P-450-linked mono-oxygenase system.
    Shimada T; Sato R
    Biochem Pharmacol; 1978 Feb; 27(4):585-93. PubMed ID: 204312
    [No Abstract]   [Full Text] [Related]  

  • 88. Assay for the enzymatic conversion of indoleacetic acid to 3-methylindole in a ruminal Lactobacillus species.
    Honeyfield DC; Carlson JR
    Appl Environ Microbiol; 1990 Mar; 56(3):724-9. PubMed ID: 2317043
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Toxicity of 3-methyleneoxindole, a proposed reactive intermediate in the metabolism of 3-methylindole.
    Appleton ML; Larson DN; Skiles GL; Nichols WK; Yost GS
    Adv Exp Med Biol; 1991; 283():245-8. PubMed ID: 2068989
    [No Abstract]   [Full Text] [Related]  

  • 90. The role of cytochromes P-450 and flavin-containing monooxygenase in the metabolism of (S)-nicotine by rabbit lung.
    Williams DE; Shigenaga MK; Castagnoli N
    Drug Metab Dispos; 1990; 18(4):418-28. PubMed ID: 1976062
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Nutrition and 3-methylindole-induced lung injury.
    Carlson JR; Bray TM
    Adv Nutr Res; 1983; 5():31-55. PubMed ID: 6342343
    [No Abstract]   [Full Text] [Related]  

  • 92. Inhibition of ruminal degradation of L-tryptophan to 3-methylindole, in vitro.
    Hammond AC; Carlson JR
    J Anim Sci; 1980 Jul; 51(1):207-14. PubMed ID: 7410274
    [TBL] [Abstract][Full Text] [Related]  

  • 93. CYP1A1 and CYP1B1, two hydrocarbon-inducible cytochromes P450, are constitutively expressed in neonate and adult goat liver, lung and kidney.
    Eltom SE; Schwark WS
    Pharmacol Toxicol; 1999 Aug; 85(2):65-73. PubMed ID: 10488687
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Duration of inhibition of 3-methylindole production by monensin.
    Honeyfield DC; Carlson JR; Nocerini MR; Breeze RG
    J Anim Sci; 1985 Jan; 60(1):226-31. PubMed ID: 3972743
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Short-term tests of genotoxicity for 1,1,1-trichloroethane.
    Turina MP; Colacci A; Grilli S; Mazzullo M; Prodi G; Lattanzi G
    Res Commun Chem Pathol Pharmacol; 1986 Jun; 52(3):305-20. PubMed ID: 2426748
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The effect of mixed function oxidase induction and inhibition on salicylate-induced nephrotoxicity in male rats.
    Kyle ME; Kocsis JJ
    Toxicol Appl Pharmacol; 1986 Jun; 84(2):241-9. PubMed ID: 3715872
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Metabolic activation of 2-methylfuran by rat microsomal systems.
    Ravindranath V; Boyd MR
    Toxicol Appl Pharmacol; 1985 May; 78(3):370-6. PubMed ID: 4049387
    [TBL] [Abstract][Full Text] [Related]  

  • 98. In vitro covalent binding of cismethrin, bioresmethrin, and their common alcohol to hepatic proteins.
    Hoellinger H; Sonnier M; Gray AJ; Connors TA; Pichon J; Nguyen HN
    Toxicol Appl Pharmacol; 1985 Jan; 77(1):11-8. PubMed ID: 3966234
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The effect of 3-methylindole on the quantity and functional quality of lung surfactant.
    Kirkland JB; Bray TM
    Can J Physiol Pharmacol; 1988 Jul; 66(7):895-900. PubMed ID: 3214801
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Isolation and characterization of two Acinetobacter species able to degrade 3-methylindole.
    Tesso TA; Zheng A; Cai H; Liu G
    PLoS One; 2019; 14(1):e0211275. PubMed ID: 30689668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.