These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 670969)

  • 81. Acetylcholine transport: fundamental properties and effects of pharmacologic agents.
    Parsons SM; Bahr BA; Gracz LM; Kaufman R; Kornreich WD; Nilsson L; Rogers GA
    Ann N Y Acad Sci; 1987; 493():220-33. PubMed ID: 3035983
    [No Abstract]   [Full Text] [Related]  

  • 82. Synthesis of fluorescent acyl-cholines with agonistic properties: pharmacological activity on Electrophorus electroplaque and interaction in vitro with Torpedo receptor-rich membrane fragments.
    Waksman G; Fournié-Zaluski MC; Roques B
    FEBS Lett; 1976 Sep; 67(3):335-42. PubMed ID: 964367
    [No Abstract]   [Full Text] [Related]  

  • 83. Proton NMR detection of acetylcholine status in synaptic vesicles.
    Stadler H; Füldner HH
    Nature; 1980 Jul; 286(5770):293-4. PubMed ID: 6250057
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Regulation of the vesamicol receptor in cholinergic synaptic vesicles by acetylcholine and an endogenous factor.
    Noremberg K; Parsons SM
    J Neurochem; 1989 Mar; 52(3):913-20. PubMed ID: 2537382
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Quantal acetylcholine release: vesicle fusion or intramembrane particles?
    Dunant Y
    Microsc Res Tech; 2000 Apr; 49(1):38-46. PubMed ID: 10757877
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Saturable [D-Ala2, D-Leu5]-enkephalin transport into cholinergic synaptic vesicles.
    Day NC; Wien D; Michaelson DM
    FEBS Lett; 1985 Apr; 183(1):25-8. PubMed ID: 3884380
    [TBL] [Abstract][Full Text] [Related]  

  • 87. AH5183 and cetiedil: two potent inhibitors of acetylcholine uptake into isolated synaptic vesicles from Torpedo marmorata.
    Diebler MF; Gaudry-Talarmain YM
    J Neurochem; 1989 Mar; 52(3):813-21. PubMed ID: 2521893
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Thiamine and cholinergic transmission in the electric organ of Torpedo. II. Effects of exogenous thiamine and analogues on acetylcholine release.
    Eder L; Dunant Y; Loctin F
    J Neurochem; 1980 Dec; 35(6):1287-96. PubMed ID: 7441250
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Electrogenic behavior of synaptic vesicles from Torpedo californica.
    Carpenter RS; Parsons SM
    J Biol Chem; 1978 Jan; 253(2):326-9. PubMed ID: 73541
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Cetiedil, a drug that inhibits acetylcholine release in Torpedo electric organ.
    Gaudry-Talarmain YM; Israël M; Lesbats B; Morel N
    J Neurochem; 1987 Aug; 49(2):548-54. PubMed ID: 3598585
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Kinetic parameters for the vesicular acetylcholine transporter: two protons are exchanged for one acetylcholine.
    Nguyen ML; Cox GD; Parsons SM
    Biochemistry; 1998 Sep; 37(38):13400-10. PubMed ID: 9748347
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Acetylcholine release from isolated synaptic vesicles related to ionic permeability changes: continuous detection with a chemiluminescent method.
    Diebler MF
    J Neurochem; 1982 Nov; 39(5):1405-11. PubMed ID: 6288874
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Type A botulinum toxin disorganizes quantal acetylcholine release and inhibits energy metabolism.
    Dunant Y; Esquerda JE; Loctin F; Marsal J; Muller D
    J Physiol (Paris); 1990; 84(3):211-9. PubMed ID: 1963640
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Cholinergic vesicle specific proteoglycan: stability in isolated vesicles and in synaptosomes during induced transmitter release.
    Kuhn DM; Volknandt W; Stadler H; Zimmermann H
    J Neurochem; 1988 Jan; 50(1):11-6. PubMed ID: 3121784
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Incorporation of acetate into acetylcholine, acetylcarnitine, and amino acids in the Torpedo electric organ.
    Corthay J; Dunant Y; Eder L; Loctin F
    J Neurochem; 1985 Dec; 45(6):1809-19. PubMed ID: 4056793
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The synthesis, storage, and release of propionylcholine by the electric organ of Torpedo marmorata.
    O'Regan S
    J Neurochem; 1982 Sep; 39(3):764-72. PubMed ID: 7097283
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Linkage of the acetylcholine transporter-vesamicol receptor to proteoglycan in synaptic vesicles.
    Bahr BA; Noremberg K; Rogers GA; Hicks BW; Parsons SM
    Biochemistry; 1992 Jun; 31(25):5778-84. PubMed ID: 1319202
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Cholinergic synaptic vesicles from the electromotor nerve terminals of Torpedo. Composition and life cycle.
    Whittaker VP
    Ann N Y Acad Sci; 1987; 493():77-91. PubMed ID: 3296914
    [No Abstract]   [Full Text] [Related]  

  • 99. VAT-1: an abundant membrane protein from Torpedo cholinergic synaptic vesicles.
    Linial M; Miller K; Scheller RH
    Neuron; 1989 Mar; 2(3):1265-73. PubMed ID: 2483112
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Quantitative description of acetylcholine release and fluctuations in nerve terminals of torpedo electric organ submitted to stimulation.
    Israel M; Lesbats B; Manaranche R
    Pflugers Arch; 1978 Oct; 377(1):117-8. PubMed ID: 569277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.