These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 6711133)

  • 21. Vibrissa movement elicited by rhythmic electrical microstimulation to motor cortex in the aroused rat mimics exploratory whisking.
    Berg RW; Kleinfeld D
    J Neurophysiol; 2003 Nov; 90(5):2950-63. PubMed ID: 12904336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Functional properties of efferent zones of the motor cortex which project to ipsilateral and contralateral face muscles].
    Franchi G; Guandalini P; Spidalieri G
    Boll Soc Ital Biol Sper; 1989 Dec; 65(12):1193-9. PubMed ID: 2627335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Postnatal development of vibrissae motor output following neonatal infraorbital nerve manipulation.
    Veronesi C; Maggiolini E; Franchi G
    Exp Neurol; 2006 Aug; 200(2):332-42. PubMed ID: 16626707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organization of the face representation in macaque motor cortex.
    McGuinness E; Sivertsen D; Allman JM
    J Comp Neurol; 1980 Oct; 193(3):591-608. PubMed ID: 7440784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Movement of facial muscles following intra-cortical microstimulation (ICMS) along the lateral branch of the posterior bank of the ansate sulcus, areas 5a and 5b, in the cat.
    Waters RS; Asanuma H
    Exp Brain Res; 1983; 50(2-3):459-63. PubMed ID: 6641879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intact intracortical microstimulation (ICMS) representations of rostral and caudal forelimb areas in rats with quinolinic acid lesions of the medial or lateral caudate-putamen in an animal model of Huntington's disease.
    Karl JM; Sacrey LA; McDonald RJ; Whishaw IQ
    Brain Res Bull; 2008 Sep; 77(1):42-8. PubMed ID: 18639744
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chapter 9--face sensorimotor cortex neuroplasticity associated with intraoral alterations.
    Avivi-Arber L; Lee JC; Sessle BJ
    Prog Brain Res; 2011; 188():135-50. PubMed ID: 21333807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Afferent and efferent pathways of the vibrissal region of primary motor cortex in the mouse.
    Porter LL; White EL
    J Comp Neurol; 1983 Mar; 214(3):279-89. PubMed ID: 6853758
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Organization of the motor representation of the facial musculature in the neocortex of various orders of mammal].
    Lenkov DN; Pronichev IV
    Usp Fiziol Nauk; 1988; 19(2):27-49. PubMed ID: 3041698
    [No Abstract]   [Full Text] [Related]  

  • 30. [The organizational characteristics of the motor representation of the vibrissae in the frontal cortex of the rat].
    Vol'nova AB; Ptitsyna IB
    Neirofiziologiia; 1990; 22(6):836-40. PubMed ID: 2097510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suppression of activity in the forelimb motor cortex temporarily enlarges forelimb representation in the homotopic cortex in adult rats.
    Maggiolini E; Viaro R; Franchi G
    Eur J Neurosci; 2008 May; 27(10):2733-46. PubMed ID: 18547253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional properties of single neurons in the face primary motor cortex of the primate. I. Input and output features of tongue motor cortex.
    Murray GM; Sessle BJ
    J Neurophysiol; 1992 Mar; 67(3):747-58. PubMed ID: 1578252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Motor responses of vibrissae to intracortical microstimulation in waking rabbits].
    Lenkov DN; Mochenkov BP; Pavlovskaia GG
    Dokl Akad Nauk SSSR; 1982; 267(4):996-9. PubMed ID: 7151677
    [No Abstract]   [Full Text] [Related]  

  • 34. Neuroplasticity of face primary motor cortex control of orofacial movements.
    Sessle BJ; Adachi K; Avivi-Arber L; Lee J; Nishiura H; Yao D; Yoshino K
    Arch Oral Biol; 2007 Apr; 52(4):334-7. PubMed ID: 17174267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Architectonics, somatotopic organization, and ipsilateral cortical connections of the primary motor area (M1) of owl monkeys.
    Stepniewska I; Preuss TM; Kaas JH
    J Comp Neurol; 1993 Apr; 330(2):238-71. PubMed ID: 7684050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-term motor cortex reorganization after facial nerve severing in newborn rats.
    Franchi G; Veronesi C
    Eur J Neurosci; 2004 Oct; 20(7):1885-96. PubMed ID: 15380010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Movements of the jaw and orofacial regions evoked by stimulation of two different cortical areas in cats.
    Iwata K; Itoga H; Ikukawa A; Hanashima N; Sumino R
    Brain Res; 1985 Dec; 359(1-2):332-7. PubMed ID: 4075154
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased occlusal vertical dimension induces cortical plasticity in the rat face primary motor cortex.
    Kato C; Fujita K; Kokai S; Ishida T; Shibata M; Naito S; Yabushita T; Ono T
    Behav Brain Res; 2012 Mar; 228(2):254-60. PubMed ID: 22123413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A reappraisal of rat motor cortex organization by intracortical microstimulation.
    Gioanni Y; Lamarche M
    Brain Res; 1985 Sep; 344(1):49-61. PubMed ID: 4041868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low threshold unilateral and bilateral facial movements evoked by motor cortex stimulation in cats.
    Guandalini P; Franchi G; Spidalieri G
    Brain Res; 1990 Feb; 508(2):273-82. PubMed ID: 2306618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.