These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6711817)

  • 1. Laser-induced fluorescence of flowing samples as an approach to single-molecule detection in liquids.
    Dovichi NJ; Martin JC; Jett JH; Trkula M; Keller RA
    Anal Chem; 1984 Mar; 56(3):348-54. PubMed ID: 6711817
    [No Abstract]   [Full Text] [Related]  

  • 2. Fast fluorescence laser tracking microrheometry. I: instrument development.
    Jonas M; Huang H; Kamm RD; So PT
    Biophys J; 2008 Feb; 94(4):1459-69. PubMed ID: 17965137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Underwater cytometer for in situ measurement of marine phytoplankton by a technique combining laser-induced fluorescence and laser Doppler velocimetry.
    Wang X; Chan RK; Cheng AS
    Opt Lett; 2005 May; 30(10):1087-9. PubMed ID: 15943276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow cytometry: rapid isolation and analysis of single cells.
    Jensen BD; Horan PK
    Methods Enzymol; 1989; 171():549-81. PubMed ID: 2480506
    [No Abstract]   [Full Text] [Related]  

  • 5. Fluorescence resonance energy transfer imaging as a tool for in situ evaluation of cell morphofunctional characteristics.
    Bottiroli G; Croce AC; Ramponi R
    J Photochem Photobiol B; 1992 Mar; 12(4):413-6. PubMed ID: 1578299
    [No Abstract]   [Full Text] [Related]  

  • 6. Concept for the traceability of fluorescence (beads) in flow cytometry: exploiting saturation and microscopic single molecule bleaching.
    Neukammer J; Gohlke C; Krämer B; Roos M
    J Fluoresc; 2005 May; 15(3):433-41. PubMed ID: 15986162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long wavelength fluorophores and cell-by-cell correction for autofluorescence significantly improves the accuracy of flow cytometric energy transfer measurements on a dual-laser benchtop flow cytometer.
    Sebestyén Z; Nagy P; Horváth G; Vámosi G; Debets R; Gratama JW; Alexander DR; Szöllosi J
    Cytometry; 2002 Jul; 48(3):124-35. PubMed ID: 12116358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capillary electrophoresis with wavelength-resolved laser-induced fluorescence detection.
    Zhang X; Stuart JN; Sweedler JV
    Anal Bioanal Chem; 2002 Jul; 373(6):332-43. PubMed ID: 12172668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput single-cell fluorescence spectroscopy.
    Isailovic D; Li HW; Phillips GJ; Yeung ES
    Appl Spectrosc; 2005 Feb; 59(2):221-6. PubMed ID: 15720763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence spectra of cells stained with a DNA-specific dye, measured by flow cytometry.
    Steen HB; Stokke T
    Cytometry; 1986 Jan; 7(1):104-6. PubMed ID: 2419053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple wavelength fluorescence enhancement on glass substrates for biochip and cell analyses.
    Fouqué B; Schaack B; Obeïd P; Combe S; Gétin S; Barritault P; Chaton P; Chatelain F
    Biosens Bioelectron; 2005 May; 20(11):2335-40. PubMed ID: 15797336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperspectral imaging system using acousto-optic tunable filter for flow cytometry applications.
    Kasili PM; Vo-Dinh T
    Cytometry A; 2006 Aug; 69(8):835-41. PubMed ID: 16969807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of single-cell fluorescence spectra in laser flow cytometry.
    Gauci MR; Vesey G; Narai J; Veal D; Williams KL; Piper JA
    Cytometry; 1996 Dec; 25(4):388-93. PubMed ID: 8946147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria.
    Zourob M; Mohr S; Brown BJ; Fielden PR; McDonnell MB; Goddard NJ
    Lab Chip; 2005 Dec; 5(12):1360-5. PubMed ID: 16286966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser beam shaping and spot size.
    Shapiro HM
    Curr Protoc Cytom; 2001 May; Chapter 1():Unit 1.6. PubMed ID: 18770670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of enteropathogenic Escherichia coli by microchip capillary electrophoresis.
    Law WS; Li SF; Kricka LJ
    Methods Mol Biol; 2009; 509():169-79. PubMed ID: 19212722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single particle high resolution spectral analysis flow cytometry.
    Goddard G; Martin JC; Naivar M; Goodwin PM; Graves SW; Habbersett R; Nolan JP; Jett JH
    Cytometry A; 2006 Aug; 69(8):842-51. PubMed ID: 16969803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward the measurement of multiple fluorescence lifetimes in flow cytometry: maximizing multi-harmonic content from cells and microspheres.
    Jenkins P; Naivar MA; Houston JP
    J Biophotonics; 2015 Nov; 8(11-12):908-17. PubMed ID: 25727072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small lasers in flow cytometry.
    Telford WG
    Methods Mol Biol; 2004; 263():399-418. PubMed ID: 14976380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioanalytical applications of capillary electrophoresis with laser-induced native fluorescence detection.
    Tseng HM; Li Y; Barrett DA
    Bioanalysis; 2010 Sep; 2(9):1641-53. PubMed ID: 21083292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.