These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 6712698)

  • 21. Accessibility changes within diphtheria toxin T domain upon membrane penetration probed by hydrogen exchange and mass spectrometry.
    Man P; Montagner C; Vitrac H; Kavan D; Pichard S; Gillet D; Forest E; Forge V
    J Mol Biol; 2011 Nov; 414(1):123-34. PubMed ID: 21986198
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membrane translocation of charged residues at the tips of hydrophobic helices in the T domain of diphtheria toxin.
    Ren J; Sharpe JC; Collier RJ; London E
    Biochemistry; 1999 Jan; 38(3):976-84. PubMed ID: 9893993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Topography of the hydrophilic helices of membrane-inserted diphtheria toxin T domain: TH1-TH3 as a hydrophilic tether.
    Wang J; Rosconi MP; London E
    Biochemistry; 2006 Jul; 45(26):8124-34. PubMed ID: 16800637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diphtheria toxin induces fusion of small unilamellar vesicles at low pH.
    Cabiaux V; Vandenbranden M; Falmagne P; Ruysschaert JM
    Biochim Biophys Acta; 1984 Aug; 775(1):31-6. PubMed ID: 6466658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. pH-triggered conformational switching of the diphtheria toxin T-domain: the roles of N-terminal histidines.
    Kurnikov IV; Kyrychenko A; Flores-Canales JC; Rodnin MV; Simakov N; Vargas-Uribe M; Posokhov YO; Kurnikova M; Ladokhin AS
    J Mol Biol; 2013 Aug; 425(15):2752-64. PubMed ID: 23648837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diphtheria toxin entry into cells is facilitated by low pH.
    Sandvig K; Olsnes S
    J Cell Biol; 1980 Dec; 87(3 Pt 1):828-32. PubMed ID: 7462324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diphtheria toxin conformational switching at acidic pH.
    Leka O; Vallese F; Pirazzini M; Berto P; Montecucco C; Zanotti G
    FEBS J; 2014 May; 281(9):2115-22. PubMed ID: 24628974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A conformational change in bovine beta-lactoglobulin at low pH.
    Mills OE; Creamer LK
    Biochim Biophys Acta; 1975 Feb; 379(2):618-26. PubMed ID: 235319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Features of the structure of catalytic subunits of toxins, inhibiting protein synthesis. I. The effect of pH and interaction with the B-chain of ricin].
    Bushueva TL; Uroshevich OI; Maĭsurian NA; Mirimanova NV; Tonevitskiĭ AG
    Mol Biol (Mosk); 1991; 25(2):422-30. PubMed ID: 1881395
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effect of pH on the conformation and stability of the plant toxin ricin].
    Bushueva TL; Tonevitskiĭ AG
    Mol Biol (Mosk); 1987; 21(2):414-21. PubMed ID: 3600623
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tetanus toxin induces fusion and aggregation of lipid vesicles containing phosphatidylinositol at low pH.
    Cabiaux V; Lorge P; Vandenbranden M; Falmagne P; Ruysschaert JM
    Biochem Biophys Res Commun; 1985 Apr; 128(2):840-9. PubMed ID: 3994725
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of pH on the conformation and stability of the structure of plant toxin-ricin.
    Bushueva TL; Tonevitsky AG
    FEBS Lett; 1987 May; 215(1):155-9. PubMed ID: 3569537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The pH-Dependent Trigger in Diphtheria Toxin T Domain Comes with a Safety Latch.
    Rodnin MV; Li J; Gross ML; Ladokhin AS
    Biophys J; 2016 Nov; 111(9):1946-1953. PubMed ID: 27806276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solution and membrane-bound chaperone activity of the diphtheria toxin translocation domain towards the catalytic domain.
    Chassaing A; Pichard S; Araye-Guet A; Barbier J; Forge V; Gillet D
    FEBS J; 2011 Dec; 278(23):4516-25. PubMed ID: 21332941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of inhibitors upon pore formation by diphtheria toxin and diphtheria toxin T domain.
    Sharpe JC; Kachel K; London E
    J Membr Biol; 1999 Oct; 171(3):223-33. PubMed ID: 10501830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endosomal proteolysis of diphtheria toxin without toxin translocation into the cytosol of rat liver in vivo.
    El Hage T; Decottignies P; Authier F
    FEBS J; 2008 Apr; 275(8):1708-22. PubMed ID: 18312597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence that diphtheria toxin and modeccin enter the cytosol from different vesicular compartments.
    Sandvig K; Sundan A; Olsnes S
    J Cell Biol; 1984 Mar; 98(3):963-70. PubMed ID: 6699094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aggregation and fusion of lipid vesicles induced by diphtheria toxin at low pH: possible involvement of the P site and the NAD+ binding site.
    Cabiaux V; Vandenbranden M; Falmagne P; Ruysschaert JM
    Biosci Rep; 1985 Mar; 5(3):243-50. PubMed ID: 4016224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The entry of diphtheria toxin into the mammalian cell cytoplasm: evidence for lysosomal involvement.
    Draper RK; Simon MI
    J Cell Biol; 1980 Dec; 87(3 Pt 1):849-54. PubMed ID: 7462326
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro determination of antigen quality: biosensor analysis and fluorescence spectroscopy.
    Kersten GF; Jiskoot W; Hazendonk T; Beuvery EC
    Dev Biol Stand; 1998; 92():295-300. PubMed ID: 9554284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.