These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 6712928)
1. Influence of the R----T transition on the optical absorption and magnetic circular dichroism spectra of methemoglobin fluoride, aquomethemoglobin, and hydroxymethemoglobin. Rots MJ; Zandstra PJ Biochemistry; 1984 Feb; 23(5):844-51. PubMed ID: 6712928 [TBL] [Abstract][Full Text] [Related]
2. Spectroscopic studies of protein-heme interactions accompanying the allosteric transition in methemoglobins. Henry ER; Rousseau DL; Hopfield JJ; Noble RW; Simon SR Biochemistry; 1985 Oct; 24(21):5907-18. PubMed ID: 4084499 [TBL] [Abstract][Full Text] [Related]
3. Magnetic circular dichroism and spin equilibrium of methemoglobin and its subunits. Mawatari K; Matsukawa S; Yoneyama Y Biochem Biophys Res Commun; 1983 Jul; 114(1):318-24. PubMed ID: 6882428 [TBL] [Abstract][Full Text] [Related]
4. [Electron structure of the active center of paramagnetic hemoproteins from the data of low-temperature magnetic circular dichroism. High-spin ferric derivatives]. Sharonov IuA; Mineev AP Mol Biol (Mosk); 1985; 19(2):378-89. PubMed ID: 2987663 [TBL] [Abstract][Full Text] [Related]
5. UV resonance Raman and excited-state relaxation rate studies of hemoglobin. Cho N; Song S; Asher SA Biochemistry; 1994 May; 33(19):5932-41. PubMed ID: 8180222 [TBL] [Abstract][Full Text] [Related]
6. Infrared magnetic circular dichroism of myoglobin derivatives. Nozawa T; Yamamoto T; Hatano M Biochim Biophys Acta; 1976 Mar; 427(1):28-37. PubMed ID: 1260002 [TBL] [Abstract][Full Text] [Related]
7. Circular dichroism and magnetic circular dichroism studies on methemoglobin and its derivatives. Kajiyoshi M; Anan FK J Biochem; 1977 May; 81(5):1327-33. PubMed ID: 893356 [TBL] [Abstract][Full Text] [Related]
8. R and T states of fluoromethemoglobin probed by ultraviolet resonance Raman spectroscopy. Jayaraman V; Rodgers KR; Mukerji I; Spiro TG Biochemistry; 1993 May; 32(17):4547-51. PubMed ID: 8485131 [TBL] [Abstract][Full Text] [Related]
9. Quaternary structure and spin-state transition in azide methemoglobin A. Neya S; Hada S; Funasaki N Biochemistry; 1983 Jul; 22(15):3686-91. PubMed ID: 6615792 [TBL] [Abstract][Full Text] [Related]
10. Influence of quaternary structure of the globin on thermal spin equilibria in different methemoglobin derivatives. Messana C; Cerdonio M; Shenkin P; Noble RW; Fermi G; Perutz RN; Perutz MF Biochemistry; 1978 Aug; 17(17):3652-62. PubMed ID: 210801 [TBL] [Abstract][Full Text] [Related]
11. Magnetic circular dichroism studies of hemoglobin. The reduction of ferrihemoglobin by ferrocytochrome b5 and characterization of the high-spin hydroxy species of mixed-valence hemoglobin. Juckett DA; Hultquist DE Biophys Chem; 1984 Jun; 19(4):321-35. PubMed ID: 6743764 [TBL] [Abstract][Full Text] [Related]
12. Magnetic circular dichroism analysis of the IHP effect on spin equilibria in human ferric hemoglobins. Linder RE; Records R; Bart G; Bunnenberg E; Djerassi C; Hedlund BE; Rosenberg A; Seamans L; Moscowitz A Biophys Chem; 1980 Oct; 12(2):143-58. PubMed ID: 7213934 [TBL] [Abstract][Full Text] [Related]
13. Different effects of subunit association upon absorption and circular dichroism spectra of methemoglobin. Mawatari K; Matsukawa S; Yoneyama Y Biochim Biophys Acta; 1983 Jun; 745(3):219-28. PubMed ID: 6860673 [TBL] [Abstract][Full Text] [Related]
14. Two enzymes with a common function but different heme ligands in the forms as isolated. Optical and magnetic properties of the heme groups in the oxidized forms of nitrite reductase, cytochrome cd1, from Pseudomonas stutzeri and Thiosphaera pantotropha. Cheesman MR; Ferguson SJ; Moir JW; Richardson DJ; Zumft WG; Thomson AJ Biochemistry; 1997 Dec; 36(51):16267-76. PubMed ID: 9405061 [TBL] [Abstract][Full Text] [Related]
15. Dependence of magneto-optical rotatory dispersion and magnetic circular dichroism of deoxy- and methemoglobin on their quaternary structure. Sharonov YA; Sharonova NA; Atanasov BP Biochim Biophys Acta; 1976 Jun; 434(2):440-51. PubMed ID: 952896 [TBL] [Abstract][Full Text] [Related]
17. [Analysis of low temperature magnetic circular dichroism of high spin ferrihemoproteids in the near UV region]. Sharonov IuA Biofizika; 1999; 44(6):1001-9. PubMed ID: 10707274 [TBL] [Abstract][Full Text] [Related]
18. A comparison of the heme electronic states in equilibrium and nonequilibrium protein conformations of high-spin ferrous hemoproteins. Low temperature magnetic circular dichroism studies. Sharonov YA; Sharonova NA; Figlovsky VA; Grigorjev VA Biochim Biophys Acta; 1982 Dec; 709(2):332-41. PubMed ID: 6295493 [TBL] [Abstract][Full Text] [Related]
19. Differences in iron-fluoride bonding between the isolated subunits of human methemoglobin fluoride and sperm whale metmyoglobin fluoride as measured by resonance Raman spectroscopy. Asher SA; Schuster TM Biochemistry; 1981 Mar; 20(7):1866-73. PubMed ID: 7225362 [TBL] [Abstract][Full Text] [Related]
20. Determination of zero-field splitting and evidence for the presence of charge-transfer transitions in the Soret region of high-spin ferric hemoproteins obtained from an analysis of low-temperature magnetic circular dichroism. Oganesyan VS; Sharonov YA Biochim Biophys Acta; 1998 Dec; 1429(1):163-75. PubMed ID: 9920394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]