These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 6713069)

  • 21. Excited-state structure and isomerization dynamics of the retinal chromophore in rhodopsin from resonance Raman intensities.
    Loppnow GR; Mathies RA
    Biophys J; 1988 Jul; 54(1):35-43. PubMed ID: 3416032
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The structure of the retinylidene chromophore in bathorhodopsin.
    Lewis A
    Biophys J; 1978 Oct; 24(1):249-54. PubMed ID: 708828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. What makes red visual pigments red? A resonance Raman microprobe study of retinal chromophore structure in iodopsin.
    Lin SW; Imamoto Y; Fukada Y; Shichida Y; Yoshizawa T; Mathies RA
    Biochemistry; 1994 Mar; 33(8):2151-60. PubMed ID: 8117671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromophore structure in lumirhodopsin and metarhodopsin I by time-resolved resonance Raman microchip spectroscopy.
    Pan D; Mathies RA
    Biochemistry; 2001 Jul; 40(26):7929-36. PubMed ID: 11425321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparative study of the infrared difference spectra for octopus and bovine rhodopsins and their bathorhodopsin photointermediates.
    Bagley KA; Eisenstein L; Ebrey TG; Tsuda M
    Biochemistry; 1989 Apr; 28(8):3366-73. PubMed ID: 2742842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Octopus photoreceptor membranes. Surface charge density and pK of the Schiff base of the pigments.
    Koutalos Y; Ebrey TG; Gilson HR; Honig B
    Biophys J; 1990 Aug; 58(2):493-501. PubMed ID: 2207250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultraviolet resonance Raman evidence for the absence of tyrosinate in octopus rhodopsin and the participation of Trp residues in the transition to acid metarhodopsin.
    Hashimoto S; Takeuchi H; Nakagawa M; Tsuda M
    FEBS Lett; 1996 Dec; 398(2-3):239-42. PubMed ID: 8977115
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Raman microscope and quantum yield studies on the primary photochemistry of A2-visual pigments.
    Barry B; Mathies RA; Pardoen JA; Lugtenburg J
    Biophys J; 1987 Oct; 52(4):603-10. PubMed ID: 3676440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resonance Raman study of the pink membrane photochemically prepared from the deionized blue membrane of H. halobium.
    Pande C; Callender RH; Chang CH; Ebrey TG
    Biophys J; 1986 Sep; 50(3):545-9. PubMed ID: 3756303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How vertebrate and invertebrate visual pigments differ in their mechanism of photoactivation.
    Nakagawa M; Iwasa T; Kikkawa S; Tsuda M; Ebrey TG
    Proc Natl Acad Sci U S A; 1999 May; 96(11):6189-92. PubMed ID: 10339563
    [TBL] [Abstract][Full Text] [Related]  

  • 31. pKa of the protonated Schiff base of visual pigments.
    Ebrey TG
    Methods Enzymol; 2000; 315():196-207. PubMed ID: 10736703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A study of the Schiff base mode in bovine rhodopsin and bathorhodopsin.
    Deng H; Callender RH
    Biochemistry; 1987 Nov; 26(23):7418-26. PubMed ID: 3427083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Primary photophysical and photochemical processes in visual excitation.
    Lewis A
    Biophys Struct Mech; 1977 Jun; 3(2):97-100. PubMed ID: 890060
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resonance Raman analysis of the mechanism of energy storage and chromophore distortion in the primary visual photoproduct.
    Yan EC; Ganim Z; Kazmi MA; Chang BS; Sakmar TP; Mathies RA
    Biochemistry; 2004 Aug; 43(34):10867-76. PubMed ID: 15323547
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural dynamics of water and the peptide backbone around the Schiff base associated with the light-activated process of octopus rhodopsin.
    Nishimura S; Kandori H; Nakagawa M; Tsuda M; Maeda A
    Biochemistry; 1997 Jan; 36(4):864-70. PubMed ID: 9020785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical activity of octopus metarhodopsins.
    Tsuda M
    Biochim Biophys Acta; 1979 Jun; 578(2):372-80. PubMed ID: 39625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Raman microscope studies on the primary photochemistry of vertebrate visual pigments with absorption maxima from 430 to 502 nm.
    Barry B; Mathies RA
    Biochemistry; 1987 Jan; 26(1):59-64. PubMed ID: 3493806
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Retinal analog study of the role of steric interactions in the excited state isomerization dynamics of rhodopsin.
    Kochendoerfer GG; Verdegem PJ; van der Hoef I; Lugtenburg J; Mathies RA
    Biochemistry; 1996 Dec; 35(50):16230-40. PubMed ID: 8973196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Primary intermediates of rhodopsin studied by low temperature spectrophotometry and laser photolysis. Bathorhodopsin, hypsorhodopsin and photorhodopsin.
    Yoshizawa T; Shichida Y; Matuoka S
    Vision Res; 1984; 24(11):1455-63. PubMed ID: 6398559
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Rhodopsin fluorescence in the retinal rods of the bull at -196 degrees C].
    Sineshchekov VA; Litvin FF
    Dokl Akad Nauk SSSR; 1985; 281(6):1471-4. PubMed ID: 4028929
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.