These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 6713069)

  • 41. Tunable laser resonance Raman spectroscopic investigations of the transduction process in vertebrate rod cells.
    Lewis A
    Fed Proc; 1976 Jan; 35(1):51-3. PubMed ID: 1245232
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Why are blue visual pigments blue? A resonance Raman microprobe study.
    Loppnow GR; Barry BA; Mathies RA
    Proc Natl Acad Sci U S A; 1989 Mar; 86(5):1515-8. PubMed ID: 2493645
    [TBL] [Abstract][Full Text] [Related]  

  • 43. First step in vision: proton transfer or isomerization?
    Dupuis P; Hárosi FI; Sándorfy C; Leclercq JM; Vocelle D
    Rev Can Biol; 1980 Dec; 39(4):247-58. PubMed ID: 6262882
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Orientation of retinylidene chromophore of hypsorhodopsin in frog retina.
    Tokunaga F; Sasaki N; Yoshizawa T
    Photochem Photobiol; 1980 Oct; 32(4):447-53. PubMed ID: 6969892
    [No Abstract]   [Full Text] [Related]  

  • 45. Resonance Raman studies of the HOOP modes in octopus bathorhodopsin with deuterium-labeled retinal chromophores.
    Deng H; Manor D; Weng G; Rath P; Koutalos Y; Ebrey T; Gebhard R; Lugtenburg J; Tsuda M; Callender RH
    Biochemistry; 1991 May; 30(18):4495-502. PubMed ID: 2021639
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Resonance Raman study of the primary photochemistry of bacteriorhodopsin.
    Pande J; Callender RH; Ebrey TG
    Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7379-82. PubMed ID: 6950382
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Existence of hypsorhodopsin as the first intermediate in the primary photochemical process of cattle rhodopsin.
    Kobayashi T
    Photochem Photobiol; 1980 Aug; 32(2):207-15. PubMed ID: 7433531
    [No Abstract]   [Full Text] [Related]  

  • 48. High-resolution solid-state 13C-NMR study of carbons C-5 and C-12 of the chromophore of bovine rhodopsin. Evidence for a 6-S-cis conformation with negative-charge perturbation near C-12.
    Mollevanger LC; Kentgens AP; Pardoen JA; Courtin JM; Veeman WS; Lugtenburg J; de Grip WJ
    Eur J Biochem; 1987 Feb; 163(1):9-14. PubMed ID: 3816805
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Resonance Raman microscopy of rod and cone photoreceptors.
    Barry B; Mathies R
    J Cell Biol; 1982 Aug; 94(2):479-82. PubMed ID: 6809771
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid-flow resonance Raman spectroscopy of photolabile molecules: rhodopsin and isorhodopsin.
    Mathies R; Oseroff AR; Stryer L
    Proc Natl Acad Sci U S A; 1976 Jan; 73(1):1-5. PubMed ID: 1061102
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of the factors that influence the C=N stretching frequency of polyene Schiff bases. Implications for bacteriorhodopsin and rhodopsin.
    Gilson HS; Honig BH; Croteau A; Zarrilli G; Nakanishi K
    Biophys J; 1988 Feb; 53(2):261-9. PubMed ID: 3345334
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Time-resolved resonance Raman analysis of chromophore structural changes in the formation and decay of rhodopsin's BSI intermediate.
    Pan D; Ganim Z; Kim JE; Verhoeven MA; Lugtenburg J; Mathies RA
    J Am Chem Soc; 2002 May; 124(17):4857-64. PubMed ID: 11971736
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spectroscopic evidence for altered chromophore--protein interactions in low-temperature photoproducts of the visual pigment responsible for congenital night blindness.
    Fahmy K; Zvyaga TA; Sakmar TP; Siebert F
    Biochemistry; 1996 Nov; 35(47):15065-73. PubMed ID: 8942673
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interpretation of the resonance Raman spectrum of bathorhodopsin based on visual pigment analogues.
    Eyring G; Curry B; Mathies R; Fransen R; Palings I; Lugtenburg J
    Biochemistry; 1980 May; 19(11):2410-8. PubMed ID: 7387982
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange.
    Deng H; Huang L; Callender R; Ebrey T
    Biophys J; 1994 Apr; 66(4):1129-36. PubMed ID: 8038384
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hypsorhodopsin: the first intermediate of the photochemical process in vision.
    Kobayashi T
    FEBS Lett; 1979 Oct; 106(2):313-6. PubMed ID: 499514
    [No Abstract]   [Full Text] [Related]  

  • 57. The nature of the primary photochemical events in rhodopsin and isorhodopsin.
    Birge RR; Einterz CM; Knapp HM; Murray LP
    Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Fluorescence of rhodopsin in the retinal rod outer segments of the frog at 77 K].
    Sineshchekov VA; Balashov SP; Litvin FF
    Dokl Akad Nauk SSSR; 1983; 270(5):1231-5. PubMed ID: 6884192
    [No Abstract]   [Full Text] [Related]  

  • 59. Assigning the resonance Raman spectral features of rhodopsin, isorhodopsin and bathorhodopsin in bovine photostationary state spectra.
    Marcus MA; Lewis A
    Photochem Photobiol; 1979 Apr; 29(4):699-702. PubMed ID: 451010
    [No Abstract]   [Full Text] [Related]  

  • 60. Behaviour of octopus rhodopsin and its photoproducts at very low temperatures.
    Tsuda M; Tokunaga F; Ebrey TG; Yue KT; Marque J; Eisenstein L
    Nature; 1980 Oct; 287(5781):461-2. PubMed ID: 7432472
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.