These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 6713148)

  • 1. Adaptive regulation of wall shear stress optimizing vascular tree function.
    Kamiya A; Bukhari R; Togawa T
    Bull Math Biol; 1984; 46(1):127-37. PubMed ID: 6713148
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanical simulation of shear stress on the walls of peripheral arteries.
    Schima H; Tsangaris S; Zilla P; Kadletz M; Wolner E
    J Biomech; 1990; 23(8):845-51. PubMed ID: 2200788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells.
    Wang DM; Tarbell JM
    J Biomech Eng; 1995 Aug; 117(3):358-63. PubMed ID: 8618390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micromechanical modelling of the arterial wall: influence of mechanical heterogeneities on the wall stress distribution and the peak wall stress.
    Toungara M; Orgéas L; Geindreau C; Bailly L
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():22-4. PubMed ID: 23923834
    [No Abstract]   [Full Text] [Related]  

  • 5. The role of wall shear stress in microvascular network adaptation.
    Hudetz AG; Kiani MF
    Adv Exp Med Biol; 1992; 316():31-9. PubMed ID: 1288092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular wall shear stress: basic principles and methods.
    Papaioannou TG; Stefanadis C
    Hellenic J Cardiol; 2005; 46(1):9-15. PubMed ID: 15807389
    [No Abstract]   [Full Text] [Related]  

  • 7. Wall shear stress--an important determinant of endothelial cell function and structure--in the arterial system in vivo. Discrepancies with theory.
    Reneman RS; Arts T; Hoeks AP
    J Vasc Res; 2006; 43(3):251-69. PubMed ID: 16491020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large variations in absolute wall shear stress levels within one species and between species.
    de Crom R; Cheng C; Helderman F; Krams R
    Atherosclerosis; 2009 May; 204(1):16-7; author reply 18-9. PubMed ID: 18823888
    [No Abstract]   [Full Text] [Related]  

  • 9. Shear stress analysis of blood-endothelial surface in inlet section of artery with plugging.
    Ray G; Davids N
    J Biomech; 1970 Jan; 3(1):99-110. PubMed ID: 5522664
    [No Abstract]   [Full Text] [Related]  

  • 10. Modelling wall shear stress in small arteries using the Lattice Boltzmann method: influence of the endothelial wall profile.
    Pontrelli G; König CS; Halliday I; Spencer TJ; Collins MW; Long Q; Succi S
    Med Eng Phys; 2011 Sep; 33(7):832-9. PubMed ID: 21546305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collapse of arteries subjected to an external band of pressure.
    Hecht AM; Yeh H; Chung SM
    J Biomech Eng; 1980 Feb; 102(1):8-22. PubMed ID: 7382458
    [No Abstract]   [Full Text] [Related]  

  • 12. Wall shear stress variations and unsteadiness of pulsatile blood-like flows in 90-degree bifurcations.
    van Wyk S; Prahl Wittberg L; Fuchs L
    Comput Biol Med; 2013 Sep; 43(8):1025-36. PubMed ID: 23816175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A thick walled viscoelastic model for the mechanics of arteries.
    Kuchar NR; Ostrach S
    J Biomech; 1969 Oct; 2(4):443-54. PubMed ID: 16335143
    [No Abstract]   [Full Text] [Related]  

  • 14. Wall shear stress: theoretical considerations and methods of measurement.
    Katritsis D; Kaiktsis L; Chaniotis A; Pantos J; Efstathopoulos EP; Marmarelis V
    Prog Cardiovasc Dis; 2007; 49(5):307-29. PubMed ID: 17329179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscosity and haemodynamics in a late gestation rat feto-placental arterial network.
    Bappoo N; Kelsey LJ; Parker L; Crough T; Moran CM; Thomson A; Holmes MC; Wyrwoll CS; Doyle BJ
    Biomech Model Mechanobiol; 2017 Aug; 16(4):1361-1372. PubMed ID: 28258413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure peaking in pulsatile flow through arterial tree structures.
    Duan B; Zamir M
    Ann Biomed Eng; 1995; 23(6):794-803. PubMed ID: 8572429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of flow, vessel diameter, and non-newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for unsteady flow.
    Box FM; van der Geest RJ; Rutten MC; Reiber JH
    Invest Radiol; 2005 May; 40(5):277-94. PubMed ID: 15829825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of blood vessel structure: insights from theoretical models.
    Pries AR; Secomb TW
    Am J Physiol Heart Circ Physiol; 2005 Mar; 288(3):H1010-5. PubMed ID: 15706037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Special issue on mechanics of the cardiovascular system.
    Westerhof N
    J Biomech; 2003 May; 36(5):621-2. PubMed ID: 12694991
    [No Abstract]   [Full Text] [Related]  

  • 20. "Effects of food restriction on mechanical properties of the arterial system in adult and middle-aged rats".
    Nichols WW; Sizemore C
    J Gerontol A Biol Sci Med Sci; 2000 Jan; 55(1):B56-7. PubMed ID: 10719765
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.