These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 671319)

  • 1. Asymmetry of the hexose transfer system in human erythrocytes. Comparison of the effects of cytochalasin B, phloretin and maltose as competitive inhibitors.
    Basketter DA; Widdas WF
    J Physiol; 1978 May; 278():389-401. PubMed ID: 671319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetry of hexose transfer system in erythrocytes of fetal and new-born guinea-pigs.
    Aubby DS; Widdas WF
    J Physiol; 1980 Dec; 309():317-27. PubMed ID: 7252868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H]cytochalasin B binding sites.
    Klip A; Logan WJ; Li G
    Biochim Biophys Acta; 1982 May; 687(2):265-80. PubMed ID: 7093257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction of an exofacial sulfhydryl group on the erythrocyte hexose carrier with an impermeant maleimide. Relevance to the mechanism of hexose transport.
    May JM
    J Biol Chem; 1988 Sep; 263(27):13635-40. PubMed ID: 3417676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetry of the hexose transfer system in human erythrocytes. Experiments with non-transportable inhibitors.
    Baker GF; Basketter DA; Widdas WF
    J Physiol; 1978 May; 278():377-88. PubMed ID: 671317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous asymmetric kinetics of human red cell hexose transfer: role of cytosolic adenosine 5'-triphosphate.
    Carruthers A
    Biochemistry; 1986 Jun; 25(12):3592-602. PubMed ID: 3718945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity of glucose transport in Trypanosoma brucei. Effective inhibition by phloretin and cytochalasin B.
    Seyfang A; Duszenko M
    Eur J Biochem; 1991 Nov; 202(1):191-6. PubMed ID: 1935976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of hexose transport and labelling of the hexose carrier in human erythrocytes by an impermeant maleimide derivative of maltose.
    May JM
    Biochem J; 1988 Sep; 254(2):329-36. PubMed ID: 3178762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of cytochalasin B to human erythrocyte glucose transporter.
    Sogin DC; Hinkle PC
    Biochemistry; 1980 Nov; 19(23):5417-20. PubMed ID: 7192569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of sugar transport in the pigeon red blood cell.
    Simons TJ
    J Physiol; 1983 May; 338():477-99. PubMed ID: 6410059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the equilibrium exchange of nucleosides and 3-O-methylglucose in human erythrocytes and of the effects of cytochalasin B, phloretin and dipyridamole on their transport.
    Plagemann PG; Woffendin C
    Biochim Biophys Acta; 1987 May; 899(2):295-301. PubMed ID: 3580369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochalasin B and the kinetics of inhibition of biological transport: a case of asymmetric binding to the glucose carrier.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1978 Jul; 510(2):339-48. PubMed ID: 667049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexose uptake in primary cultures of bovine brain microvessel endothelial cells. I. Basic characteristics and effects of D-glucose and insulin.
    Takakura Y; Kuentzel SL; Raub TJ; Davies A; Baldwin SA; Borchardt RT
    Biochim Biophys Acta; 1991 Nov; 1070(1):1-10. PubMed ID: 1751515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The action of inhibitors of sugar transport phlorizin, phloretin and cytochalasin B in model systems].
    Vasianin SI
    Tsitologiia; 1989 Jan; 31(1):57-65. PubMed ID: 2718259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Re-examination of hexose-transporter inhibition and labelling by hexose isothiocyanates.
    Rees WD; Gliemann J; Holman GD
    Biochem J; 1987 Feb; 241(3):857-62. PubMed ID: 3593225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose transport inhibitors protect against 1,2-cyclohexanedione-produced potassium loss from human red blood cells.
    Baker GF; O'Gorman R; Baker P
    Exp Physiol; 1998 Mar; 83(2):239-42. PubMed ID: 9568484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of cytochalasins on lymphocytes. Identification of distinct cytochalasin-binding sites in relation to mitogenic response and hexose transport.
    Mookerjee BK; Cuppoletti J; Rampal AL; Jung CY
    J Biol Chem; 1981 Feb; 256(3):1290-300. PubMed ID: 7451506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The binding sites of cytochalasin D. II. Their relationship to hexose transport and to cytochalasin B.
    Tannenbaum J; Tanenbaum SW; Godman GC
    J Cell Physiol; 1977 May; 91(2):239-48. PubMed ID: 863973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive inhibition of hexose transfer in human erythrocytes by Cytochalasin B [proceedings].
    Basketter DA; Widdas WF
    J Physiol; 1977 Feb; 265(1):39P-40P. PubMed ID: 850178
    [No Abstract]   [Full Text] [Related]  

  • 20. Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.
    Pérez A; Ojeda P; Valenzuela X; Ortega M; Sánchez C; Ojeda L; Castro M; Cárcamo JG; Rauch MC; Concha II; Rivas CI; Vera JC; Reyes AM
    Am J Physiol Cell Physiol; 2009 Jul; 297(1):C86-93. PubMed ID: 19386788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.