These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6714197)

  • 1. Exponential function of chymotrypsin action.
    Keller F; Koeppe P; Emde C
    Enzyme; 1984; 31(1):39-44. PubMed ID: 6714197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exponential function for calculating saturable enzyme kinetics.
    Keller F; Emde C; Schwarz A
    Clin Chem; 1988 Dec; 34(12):2486-9. PubMed ID: 3197288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.
    Goličnik M
    Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-molecule Michaelis-Menten equations.
    Kou SC; Cherayil BJ; Min W; English BP; Xie XS
    J Phys Chem B; 2005 Oct; 109(41):19068-81. PubMed ID: 16853459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The prothrombinase reaction: "mechanism switching" between Michaelis-Menten and non-Michaelis-Menten behaviors.
    Lu Y; Nelsestuen GL
    Biochemistry; 1996 Jun; 35(25):8201-9. PubMed ID: 8679574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 1-exp function as an alternative model of non-linear saturable kinetics.
    Keller F; Zellner D
    Eur J Clin Chem Clin Biochem; 1996 Mar; 34(3):265-71. PubMed ID: 8721415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validity of quasi-steady-state and transfer-function representations for input-output relation in a Michaelis-Menten reaction.
    Sakamoto N
    Biotechnol Bioeng; 1986 Aug; 28(8):1191-9. PubMed ID: 18555445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [pH-dependence of tryptophan ethyl ester hydrolysis by alpha-chymotrypsin].
    Shviadas VIu; Galaev IIu; Berezin IV
    Biokhimiia; 1980 Apr; 45(4):629-35. PubMed ID: 7378494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deviations from Michaelis-Menten kinetics. The possibility of complicated curves for simple kinetic schemes and the computer fitting of experimental data for acetylcholinesterase, acid phosphatase, adenosine deaminase, arylsulphatase, benzylamine oxidase, chymotrypsin, fumarase, galactose dehydrogenase, beta-galactosidase, lactate dehydrogenase, peroxidase and xanthine oxidase.
    Bardsley WG; Leff P; Kavanagh J; Waight RD
    Biochem J; 1980 Jun; 187(3):739-65. PubMed ID: 6821369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized rate equation for single-substrate enzyme catalyzed reactions.
    Kargi F
    Biochem Biophys Res Commun; 2009 Apr; 382(1):157-9. PubMed ID: 19265680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic characterization of the chymotryptic activity of the 20S proteasome.
    Stein RL; Melandri F; Dick L
    Biochemistry; 1996 Apr; 35(13):3899-908. PubMed ID: 8672420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme activity of alpha-chymotrypsin after derivatization with phenolic compounds.
    Rohn S; Rawel HM; Wollenberger U; Kroll J
    Nahrung; 2003 Oct; 47(5):325-9. PubMed ID: 14609088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Determination of kinetic constants in the general case of cooperative type or Michaelis enzymes inhibited by their substrate: theoretic analysis].
    Bounias M
    C R Acad Sci III; 1986; 303(12):495-500. PubMed ID: 3098357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Half-time analysis of the integrated Michaelis equation. Simulation and use of the half-time plot and its direct linear variant in the analysis of some alpha-chymotrypsin, papain- and fumarase-catalysed reactions.
    Wharton CW; Szawelski RJ
    Biochem J; 1982 May; 203(2):351-60. PubMed ID: 7115291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Evaluation of kinetic parameters of unpurified enzymic systems, method for measuring the concentration of endogenous substrate].
    Potapov AP
    Biofizika; 1981; 26(3):434-6. PubMed ID: 7260154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional numerical approach to investigate the substrate transport and conversion in an immobilized enzyme reactor.
    Esterl S; Ozmutlu O; Hartmann C; Delgado A
    Biotechnol Bioeng; 2003 Sep; 83(7):780-9. PubMed ID: 12889018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explicit reformulations of time-dependent solution for a Michaelis-Menten enzyme reaction model.
    Golicnik M
    Anal Biochem; 2010 Nov; 406(1):94-6. PubMed ID: 20599638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate kinetic parameter estimation during progress curve analysis of systems with endogenous substrate production.
    Goudar CT
    Biotechnol Bioeng; 2011 Oct; 108(10):2499-503. PubMed ID: 21520020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements of kinetic parameters in a microfluidic reactor.
    Kerby MB; Legge RS; Tripathi A
    Anal Chem; 2006 Dec; 78(24):8273-80. PubMed ID: 17165816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic study of the alpha-chymotrypsin-catalyzed hydrolysis and synthesis of a peptide bond in a monophasic aqueous/organic reaction medium.
    Deschrevel B; Vincent JC; Thellier M
    Arch Biochem Biophys; 1993 Jul; 304(1):45-52. PubMed ID: 8323297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.