These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 6714431)

  • 41. Identification of the residues on cyclic GMP-dependent protein kinase that are autophosphorylated in the presence of cyclic AMP and cyclic GMP.
    Aitken A; Hemmings BA; Hofmann F
    Biochim Biophys Acta; 1984 Nov; 790(3):219-25. PubMed ID: 6091762
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Insulin-like growth factor-binding protein-1 is phosphorylated by cultured human endometrial stromal cells and multiple protein kinases in vitro.
    Frost RA; Tseng L
    J Biol Chem; 1991 Sep; 266(27):18082-8. PubMed ID: 1655736
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phosphorylation of fodrin (nonerythroid spectrin) by the purified insulin receptor kinase.
    Kadowaki T; Nishida E; Kasuga M; Akiyama T; Takaku F; Ishikawa M; Sakai H; Kathuria S; Fujita-Yamaguchi Y
    Biochem Biophys Res Commun; 1985 Mar; 127(2):493-500. PubMed ID: 2983722
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of abnormally [32P]-phosphorylated cyanogen bromide cleavage product of erythrocyte membrane spectrin in Duchenne muscular dystrophy.
    Roses AD; Shile PE; Herbstreith MH; Balakrishnan CV
    Neurology; 1981 Aug; 31(8):1026-30. PubMed ID: 7196515
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Differential regulation of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase isoenzymes by cyclic AMP-dependent protein kinase and calmodulin-dependent phosphatase.
    Sharma RK; Wang JH
    Proc Natl Acad Sci U S A; 1985 May; 82(9):2603-7. PubMed ID: 2986124
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calmodulin-dependent spectrin kinase activity in human erythrocytes.
    Huestis WH; Nelson MJ; Ferrell JE
    Prog Clin Biol Res; 1981; 56():137-55. PubMed ID: 6120520
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phosphorylation and inactivation of rat heart glycogen synthase by cAMP-dependent and cAMP-independent protein kinases.
    Grekinis D; Reimann EM; Schlender KK
    Int J Biochem Cell Biol; 1995 Jun; 27(6):565-73. PubMed ID: 7671134
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural studies on human spectrin. Comparison of subunits and fragmentation of native spectrin.
    Anderson JM
    J Biol Chem; 1979 Feb; 254(3):939-44. PubMed ID: 762104
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Purification and control of bovine adrenal cortical cholesterol ester hydrolase and evidence for the activation of the enzyme by a phosphorylation.
    Beckett GJ; Boyd GS
    Eur J Biochem; 1977 Jan; 72(2):223-33. PubMed ID: 189999
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CK2 constitutively associates with and phosphorylates chicken erythroid ankyrin and regulates its ability to bind to spectrin.
    Ghosh S; Dorsey FC; Cox JV
    J Cell Sci; 2002 Nov; 115(Pt 21):4107-15. PubMed ID: 12356915
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Purification and characterization of a catalytic subunit of an adenosine 3':5'-monophosphate-dependent protein kinase from human erythrocyte membranes.
    Suzuki K; Terao T; Osawa T
    J Biochem; 1981 Jan; 89(1):1-11. PubMed ID: 6260758
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Species-dependent isoenzyme subtypes of membrane-bound cyclic AMP-dependent protein kinase in highly purified cardiac sarcolemma.
    Church JG; Derdemezi JB; Yuan S; Sen AK
    Biochem J; 1986 Sep; 238(2):341-4. PubMed ID: 3026349
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Calcium/phospholipid-dependent kinase recognizes sites in microtubule-associated protein 2 which are phosphorylated in living brain and are not accessible to other kinases.
    Tsuyama S; Bramblett GT; Huang KP; Flavin M
    J Biol Chem; 1986 Mar; 261(9):4110-6. PubMed ID: 3949805
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultrastructural studies of the interaction of spectrin with phosphatidylserine liposomes.
    Cohen AM; Liu SC; Derick LH; Palek J
    Blood; 1986 Oct; 68(4):920-6. PubMed ID: 3756353
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of the phosphorylation of red blood cell membrane proteins.
    Boivin P
    Biochem J; 1988 Dec; 256(3):689-95. PubMed ID: 3066352
    [No Abstract]   [Full Text] [Related]  

  • 56. A cyclic AMP-dependent phosphorylation of spectrin dimer.
    Lutz HU
    FEBS Lett; 1984 Apr; 169(2):323-9. PubMed ID: 6714431
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of 2,3-diphosphoglyceric acid on the human erythrocyte membrane phosphorylation system.
    Conway RG; Tao M
    J Biol Chem; 1981 Nov; 256(22):11932-8. PubMed ID: 6271766
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Red cell spectrin phosphorylation and cytoskeletal anchorage.
    Lutz HU; Stringaro-Wipf G; Maretzki D
    J Cardiovasc Pharmacol; 1986; 8 Suppl 8():S76-9. PubMed ID: 2433532
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phosphorylation of ankyrin decreases its affinity for spectrin tetramer.
    Lu PW; Soong CJ; Tao M
    J Biol Chem; 1985 Dec; 260(28):14958-64. PubMed ID: 2933395
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calmodulin inhibits the phosphorylation of spectrin in vitro.
    Maretzki D; Lutz HU
    Arch Biochem Biophys; 1986 Apr; 246(1):469-77. PubMed ID: 3008660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.