These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 6715003)

  • 1. The polyacrylamide as a phantom material for electromagnetic hyperthermia studies.
    Bini MG; Ignesti A; Millanta L; Olmi R; Rubino N; Vanni R
    IEEE Trans Biomed Eng; 1984 Mar; 31(3):317-22. PubMed ID: 6715003
    [No Abstract]   [Full Text] [Related]  

  • 2. Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators.
    Surowiec A; Shrivastava PN; Astrahan M; Petrovich Z
    Int J Hyperthermia; 1992; 8(6):795-807. PubMed ID: 1479205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical quantification of the effects of plastic wall thickness on phantom measurements in electromagnetic hyperthermia.
    Ross MP; Paulsen KD
    IEEE Trans Biomed Eng; 1989 Aug; 36(8):869-72. PubMed ID: 2759648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical electric field distributions produced by three types of regional hyperthermia devices in a three-dimensional homogeneous model of man.
    Paulsen KD; Strohbehn JW; Lynch DR
    IEEE Trans Biomed Eng; 1988 Jan; 35(1):36-45. PubMed ID: 3338810
    [No Abstract]   [Full Text] [Related]  

  • 5. A quasi-static model for the ring capacitor applicator.
    Sowiński MJ; van Putten MH; van den Berg PM; van Rhoon GC
    IEEE Trans Biomed Eng; 1989 Oct; 36(10):995-1003. PubMed ID: 2793200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A water-cooled EM applicator radiating in a phantom equivalent tissue--experiments and numerical analysis.
    Gentili GB; Gori F; Lachi L; Leoncini M
    IEEE Trans Biomed Eng; 1991 Sep; 38(9):924-8. PubMed ID: 1743741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of the thermal conductivity of polyacrylamide tissue-equivalent material.
    Davidson SR; Sherar MD
    Int J Hyperthermia; 2003; 19(5):551-62. PubMed ID: 12944169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of polyacrylamide as a tissue-equivalent material in the microwave range.
    Andreuccetti D; Bini M; Ignesti A; Olmi R; Rubino N; Vanni R
    IEEE Trans Biomed Eng; 1988 Apr; 35(4):275-7. PubMed ID: 3360458
    [No Abstract]   [Full Text] [Related]  

  • 9. Hyperthermia by local EM heating and local conductivity change.
    Guru BS
    IEEE Trans Biomed Eng; 1977 Sep; 24(5):473-7. PubMed ID: 892844
    [No Abstract]   [Full Text] [Related]  

  • 10. [Thermometry during electromagnetic hyperthermia].
    Boucek J; Andrysek O; Borovicka M; Lapes M; Pokorný J; Vrba J
    Sb Lek; 1986 Jul; 88(7):193-8. PubMed ID: 3738408
    [No Abstract]   [Full Text] [Related]  

  • 11. [Possibility of using high-frequency electromagnetic fields for modeling local controlled hyperthermia].
    Kratenok VE; Fradkin SZ; Zhavrid EA
    Vopr Onkol; 1987; 33(8):77-81. PubMed ID: 3630033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a phantom compatible for MRI and hyperthermia using carrageenan gel-relationship between T1 and T2 values and NaCl concentration.
    Yoshida A; Kato H; Kuroda M; Hanamoto K; Yoshimura K; Shibuya K; Kawasaki S; Tsunoda M; Kanazawa S; Hiraki Y
    Int J Hyperthermia; 2004 Dec; 20(8):803-14. PubMed ID: 15764343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focusing of 915 MHz electromagnetic power on deep human tissues: a mathematical model study.
    Arcangeli G; Lombardini PP; Lovisolo GA; Marsiglia G; Piattelli M
    IEEE Trans Biomed Eng; 1984 Jan; 31(1):47-52. PubMed ID: 6724609
    [No Abstract]   [Full Text] [Related]  

  • 14. Applications of time-varying magnetic fields in medicine.
    Stuchly MA
    Crit Rev Biomed Eng; 1990; 18(2):89-124. PubMed ID: 2242677
    [No Abstract]   [Full Text] [Related]  

  • 15. Quantification of interaction between ELF-LF electric fields and human bodies.
    Chen KM; Chuang HR; Lin CJ
    IEEE Trans Biomed Eng; 1986 Aug; 33(8):746-56. PubMed ID: 3744391
    [No Abstract]   [Full Text] [Related]  

  • 16. [Distribution of millimeter-band electromagnetic fields in model and biological tissues during irradiation in the reactive zone of an irradiator].
    Betskiĭ OV; Petrov IIu; Tiazhelov VV; Khizhniak EP; Iaremenko IuG
    Dokl Akad Nauk SSSR; 1989; 309(1):230-3. PubMed ID: 2625120
    [No Abstract]   [Full Text] [Related]  

  • 17. [A device for exposing small laboratory animals to electrostatic fields].
    Akimenko VIa; Paketa VP
    Gig Sanit; 1988 Jul; (7):37-40. PubMed ID: 3215537
    [No Abstract]   [Full Text] [Related]  

  • 18. A method for the exposure of miniature swine to vertical 60 Hz electric fields.
    Kaune WT; Phillips RD; Hjeresen DL; Richardson RL; Beamer JL
    IEEE Trans Biomed Eng; 1978 May; 25(3):276-83. PubMed ID: 680757
    [No Abstract]   [Full Text] [Related]  

  • 19. Illustrating the effectiveness of surface admittances (impedances) for simplifying modelling physiological (ECG/EEG) potential fields.
    Bones PJ; Bates RH
    Australas Phys Eng Sci Med; 1988; 11(3):94-9. PubMed ID: 3196240
    [No Abstract]   [Full Text] [Related]  

  • 20. A model of cell electromagnetic susceptibility associated with the membrane electric field.
    Arber S
    Physiol Chem Phys Med NMR; 1986; 18(1):49-51. PubMed ID: 3774896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.