These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 671522)

  • 1. Kinetic analysis of the inhibition of sulfate transport in human red blood cells by isothiocyanates.
    Rakitzis ET; Gilligan PJ; Hoffman JF
    J Membr Biol; 1978 Jun; 41(2):101-15. PubMed ID: 671522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anion transport in red blood cells. II. Kinetics of reversible inhibition by nitroaromatic sulfonic acids.
    Barzilay M; Cabantchik ZI
    Membr Biochem; 1979; 2(2):255-81. PubMed ID: 229385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of sulfate transport in Ehrlich ascites tumor cells by 4-acetamido-4'-isothiocyano-stilbene-2,2'-disulfonic acid(SITS).
    Villereal ML; Levinson C
    J Cell Physiol; 1976 Oct; 89(2):303-11. PubMed ID: 972169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Ehrlich ascites cell anion transport by 1-isothiocyanate-4-benzenesulfonic acid.
    Aull F
    Biochim Biophys Acta; 1980 Jul; 599(2):580-6. PubMed ID: 7407108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional evidence for distinct interaction of hydrophobic arylisothiocyanates with the erythrocyte anion transport protein.
    Cacciola SO; Sigrist H; Reist M; Cabantchik ZI; Zahler P
    J Membr Biol; 1984; 81(2):139-47. PubMed ID: 6492134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfate flux in high sodium cat red cells.
    Sha'afi RI; Pascoe E
    J Gen Physiol; 1972 Feb; 59(2):155-66. PubMed ID: 5058472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maltosyl isothiocyanate: an affinity label for the glucose transporter of the human erythrocyte membrane. 1. Inhibition of glucose transport.
    Mullins RE; Langdon RG
    Biochemistry; 1980 Mar; 19(6):1199-205. PubMed ID: 7189410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical modification of membrane proteins in relation to inhibition of anion exchange in human red blood cells.
    Zaki L; Fasold H; Schuhmann B; Passow H
    J Cell Physiol; 1975 Dec; 86(3 Pt 1):471-94. PubMed ID: 1202029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4,4'-diisothiocyano stilbene-2,2'-disulfonic acid (DIDS) and its dihydro derivative (H2DIDS).
    Lepke S; Fasold H; Pring M; Passow H
    J Membr Biol; 1976 Oct; 29(1-2):147-77. PubMed ID: 978716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of the inhibitory potency of reversibly acting inhibitors of anion transport on chloride and sulfate movements across the human red cell membrane.
    Ku CP; Jennings ML; Passow H
    Biochim Biophys Acta; 1979 May; 553(1):132-41. PubMed ID: 454583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction of fluorescent probes with anion permeability pathways of human red cells.
    Fortes PA; Hoffman JF
    J Membr Biol; 1974; 16(1):79-100. PubMed ID: 4837996
    [No Abstract]   [Full Text] [Related]  

  • 12. Anion transport in red blood cells and arginine-specific reagents. Interaction between the substrate-binding site and the binding site of arginine-specific reagents.
    Zaki L; Julien T
    Biochim Biophys Acta; 1985 Sep; 818(3):325-32. PubMed ID: 4041441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of anion transport in cat and dog red blood cells.
    Castranova V; Weise MJ; Hoffman JF
    J Membr Biol; 1979 Aug; 49(1):57-74. PubMed ID: 480338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of reversible DIDS inhibition of chloride self exchange in human erythrocytes.
    Janas T; Bjerrum PJ; Brahm J; Wieth JO
    Am J Physiol; 1989 Oct; 257(4 Pt 1):C601-6. PubMed ID: 2801916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A membrane protein from human erythrocytes involved in anion exchange.
    Ho MK; Guidotti G
    J Biol Chem; 1975 Jan; 250(2):675-83. PubMed ID: 1112782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton-sulfate co-transport: mechanism of H+ and sulfate addition to the chloride transporter of human red blood cells.
    Milanick MA; Gunn RB
    J Gen Physiol; 1982 Jan; 79(1):87-113. PubMed ID: 7061989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of an anionic photoreactive probe with the anion transport system of the human red blood cell.
    Cabantchik ZI; Knauf PA; Ostwald T; Markus H; Davidson L; Breuer W; Rothstein A
    Biochim Biophys Acta; 1976 Dec; 455(2):526-37. PubMed ID: 999926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Furosemide inhibition of chloride transport in human red blood cells.
    Brazy PC; Gunn RB
    J Gen Physiol; 1976 Dec; 68(6):583-99. PubMed ID: 993773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of tritiated 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid ([3H]DIDS) and its covalent reaction with sites related to anion transport in human red blood cells.
    Ship S; Shami Y; Breuer W; Rothstein A
    J Membr Biol; 1977 May; 33(3-4):311-23. PubMed ID: 864693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of phenylisothiocyanate with human erythrocyte band 3 protein. I. Covalent modification and inhibition of phosphate transport.
    Sigrist H; Kempf C; Zahler P
    Biochim Biophys Acta; 1980 Mar; 597(1):137-44. PubMed ID: 7370239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.