These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 671525)

  • 1. Morphology of egg phosphatidylcholine-cholesterole single-bilayer vesicles, studied by freeze-etch electron microscopy.
    Forge A; Knowles PF; Marsh D
    J Membr Biol; 1978 Jul; 41(3):249-63. PubMed ID: 671525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural studies on phophatidylcholine-cholesterol mixed vesicles.
    Newman GC; Huang C
    Biochemistry; 1975 Jul; 14(15):3363-70. PubMed ID: 1170890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhodopsin-egg phosphatidylcholine reconstitution by an octyl glucoside dilution procedure.
    Jackson ML; Litman BJ
    Biochim Biophys Acta; 1985 Jan; 812(2):369-76. PubMed ID: 3881128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of cholesterol and phosphatidylcholine exchange or transfer between unilamellar vesicles.
    McLean LR; Phillips MC
    Biochemistry; 1981 May; 20(10):2893-900. PubMed ID: 7195733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liposomes encapsulating polymeric chitosan based vesicles--a vesicle in vesicle system for drug delivery.
    McPhail D; Tetley L; Dufes C; Uchegbu IF
    Int J Pharm; 2000 Apr; 200(1):73-86. PubMed ID: 10845688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transbilayer distribution of phosphatidylethanolamine in large and small unilamellar vesicles.
    Nordlund JR; Schmidt CF; Dicken SN; Thompson TE
    Biochemistry; 1981 May; 20(11):3237-41. PubMed ID: 7195736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Outside-inside distributions and sizes of mixed phosphatidylcholine-cholesterol vesicles.
    De Kruijff B; Cullis PR; Radda GK
    Biochim Biophys Acta; 1976 Jul; 436(4):729-40. PubMed ID: 952917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of unilamellar lipid vesicles of controllable dimensions by detergent dialysis.
    Rhoden V; Goldin SM
    Biochemistry; 1979 Sep; 18(19):4173-6. PubMed ID: 39593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological changes of phosphatidylcholine bilayers induced by melittin: vesicularization, fusion, discoidal particles.
    Dufourcq J; Faucon JF; Fourche G; Dasseux JL; Le Maire M; Gulik-Krzywicki T
    Biochim Biophys Acta; 1986 Jul; 859(1):33-48. PubMed ID: 3718985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology and phase behavior of two types of unilamellar vesicles prepared from synthetic phosphatidylcholines studied by freeze-fracture electron microscopy and calorimetry.
    Parente RA; Höchli M; Lentz BR
    Biochim Biophys Acta; 1985 Jan; 812(2):493-502. PubMed ID: 3838143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of water permeability through phospholipid vesicle membranes by 17O NMR.
    Haran N; Shoporer M
    Biochim Biophys Acta; 1976 Apr; 426(4):638-46. PubMed ID: 1259988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single bilayer vesicles prepared without sonication. Physico-chemical properties.
    Brunner J; Skrabal P; Hauser H
    Biochim Biophys Acta; 1976 Dec; 455(2):322-31. PubMed ID: 1033769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of particle sizes with metal replication under standard freeze-etching conditions: a gold ball standard for calibrating shadow widths was used to measure freeze-etched globular proteins.
    Ruben GC
    Microsc Res Tech; 1995 Nov; 32(4):312-29. PubMed ID: 8573781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rippled structure in bilayer membranes of phosphatidylcholine and binary mixtures of phosphatidylcholine and cholesterol.
    Copeland BR; McConnel HM
    Biochim Biophys Acta; 1980 Jun; 599(1):95-109. PubMed ID: 7397161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of short-chain lecithin with long-chain phospholipids: characterization of vesicles that form spontaneously.
    Gabriel NE; Roberts MF
    Biochemistry; 1986 May; 25(10):2812-21. PubMed ID: 3718923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of vesicle size distributions by freeze-fracture electron microscopy.
    Hallett FR; Nickel B; Samuels C; Krygsman PH
    J Electron Microsc Tech; 1991 Apr; 17(4):459-66. PubMed ID: 1865244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric permeability of the membrane of egg phosphatidylcholine-cholesterol vesicles to 2,2,6,6 tetramethyl piperidinyl-l-oxycholine.
    Setaka M; Ichiki T; Shimizu H
    J Biochem; 1978 May; 83(5):1299-303. PubMed ID: 207683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape modification of phospholipid vesicles induced by high pressure: influence of bilayer compressibility.
    Beney L; Perrier-Cornet JM; Hayert M; Gervais P
    Biophys J; 1997 Mar; 72(3):1258-63. PubMed ID: 9138571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of apoliprotein C-III with phosphatidylcholine vesicles. Dependence of aproprotein-phospholipid complex formation on vesicle structure.
    Morrisett JD; Pownall HJ; Gotto AM
    Biochim Biophys Acta; 1976 Jan; 486(1):36-46. PubMed ID: 188485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase behaviour of mixtures of lipid X with phosphatidylcholine and phosphatidylethanolamine.
    Lipka G; Hauser H
    Biochim Biophys Acta; 1989 Feb; 979(2):239-50. PubMed ID: 2923879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.