These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 671529)
1. Energy-dependence of phlorizin binding to isolated renal microvillus membranes. Evidence concerning the mechanism of coupling between the electrochemical Na+ gradient the sugar transport. Aronson PS J Membr Biol; 1978 Jul; 42(1):81-98. PubMed ID: 671529 [TBL] [Abstract][Full Text] [Related]
2. Two substrate sites in the renal Na(+)-D-glucose cotransporter studied by model analysis of phlorizin binding and D-glucose transport measurements. Koepsell H; Fritzsch G; Korn K; Madrala A J Membr Biol; 1990 Mar; 114(2):113-32. PubMed ID: 2342089 [TBL] [Abstract][Full Text] [Related]
3. A two sodium ion/D-glucose symport mechanism: membrane potential effects on phlorizin binding. Lever JE Biochemistry; 1984 Sep; 23(20):4697-702. PubMed ID: 6541946 [TBL] [Abstract][Full Text] [Related]
4. Use of ionophores to study Na+ transport pathways in renal microvillus membrane vesicles. Aronson PS; Kinsella JL Fed Proc; 1981 Jun; 40(8):2213-7. PubMed ID: 6263713 [TBL] [Abstract][Full Text] [Related]
5. Potential-dependent D-glucose uptake by renal brush border membrane vesicles in the absence of sodium. Hilden S; Sacktor B Am J Physiol; 1982 Apr; 242(4):F340-5. PubMed ID: 7065244 [TBL] [Abstract][Full Text] [Related]
6. Role of the electrochemical gradient for Na+ in D-glucose transport by mullet kidney. Lee SH; Pritchard JB Am J Physiol; 1983 Mar; 244(3):F278-88. PubMed ID: 6299114 [TBL] [Abstract][Full Text] [Related]
7. The Na+ gradient-dependent transport of D-glucose in renal brush border membranes. Aronson PS; Sacktor B J Biol Chem; 1975 Aug; 250(15):6032-9. PubMed ID: 1150669 [TBL] [Abstract][Full Text] [Related]
8. Structural state of the Na+/D-glucose cotransporter in calf kidney brush-border membranes. Target size analysis of Na+-dependent phlorizin binding and Na+-dependent D-glucose transport. Lin JT; Szwarc K; Kinne R; Jung CY Biochim Biophys Acta; 1984 Nov; 777(2):201-8. PubMed ID: 6148966 [TBL] [Abstract][Full Text] [Related]
9. Two-step mechanism of phlorizin binding to the SGLT1 protein in the kidney. Oulianova N; Falk S; Berteloot A J Membr Biol; 2001 Feb; 179(3):223-42. PubMed ID: 11246421 [TBL] [Abstract][Full Text] [Related]
10. High-affinity phlorizin binding to brush border membranes from small intestine: identity with (a part of) the glucose transport system, dependence on Na +-gradient, partial purification. Tannenbaum C; Toggenburger G; Kessler M; Rothstein A; Semenza G J Supramol Struct; 1977; 6(4):519-33. PubMed ID: 413010 [TBL] [Abstract][Full Text] [Related]
11. Phlorizin as a probe of the small-intestinal Na+,D-glucose cotransporter. A model. Toggenburger G; Kessler M; Semenza G Biochim Biophys Acta; 1982 Jun; 688(2):557-71. PubMed ID: 7201854 [TBL] [Abstract][Full Text] [Related]
12. Heterogeneity in the effects of membrane potentials on pantothenate and glucose uptakes by rabbit renal apical membranes. Barbarat B; Chambrey R; Podevin RA J Physiol; 1991 Nov; 443():79-90. PubMed ID: 1822544 [TBL] [Abstract][Full Text] [Related]
13. 4-Azidophlorizin, a high affinity probe and photoaffinity label for the glucose transporter in brush border membranes. Gibbs EM; Hosang M; Reber BF; Semenza G; Diedrich DF Biochim Biophys Acta; 1982 Jun; 688(2):547-56. PubMed ID: 7201853 [TBL] [Abstract][Full Text] [Related]
14. Effect of phloretin on Na+-dependent D-glucose uptake by intestinal brush border membrane vesicles. Yokota K; Nishi Y; Takesue Y Biochem Pharmacol; 1983 Nov; 32(22):3453-7. PubMed ID: 6651868 [TBL] [Abstract][Full Text] [Related]
15. Transepithelial transport in cell culture: stoichiometry of Na/phlorizin binding and Na/D-glucose cotransport. A two-step, two sodium model of binding and translocation. Misfeldt DS; Sanders MJ J Membr Biol; 1982; 70(3):191-8. PubMed ID: 7186940 [TBL] [Abstract][Full Text] [Related]
16. High affinity phlorizin receptor sites and their relation to the glucose transport mechanism in the proximal tubule of dog kidney. Silverman M; Black J Biochim Biophys Acta; 1975 Jun; 394(1):10-30. PubMed ID: 1095065 [TBL] [Abstract][Full Text] [Related]
17. Interaction of phlorizin and sodium with the renal brush-border membrane D-glucose transporter: stoichiometry and order of binding. Turner RJ; Silverman M J Membr Biol; 1981 Jan; 58(1):43-55. PubMed ID: 7194377 [TBL] [Abstract][Full Text] [Related]
18. Similarity in effects of Na+ gradients and membrane potentials on D-glucose transport by, and phlorizin binding to, vesicles derived from brush borders of rattit intestinal mucosal cells. Toggenburger G; Kessler M; Rothstein A; Semenza G; Tannenbaum C J Membr Biol; 1978 May; 40(3):269-90. PubMed ID: 660646 [TBL] [Abstract][Full Text] [Related]
19. Phlorizin increases the permeability of intestinal mucosal membrane to sodium. Dinda PK; Beck IT Can J Physiol Pharmacol; 1987 Apr; 65(4):579-86. PubMed ID: 3607604 [TBL] [Abstract][Full Text] [Related]
20. Localization of the Na+-sugar cotransport system in a kidney epithelial cell line (LLC PK1). Rabito CA Biochim Biophys Acta; 1981 Dec; 649(2):286-96. PubMed ID: 7198488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]